CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array |
Wang Xiao-Bo (王小波)a b, Li Yong (李勇)c, Yan Ling-Ling (闫玲玲)a, Li Xin-Jian (李新建)a |
a Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China; b College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China; c Department of Physics, Pingdingshan University, Pingdingshan 467000, China |
|
|
Abstract A GaN/Si nanoheterojunction is prepared through growing GaN nanocrystallites (nc-GaN) on a silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) technique at a relatively low temperature. The average size of nc-GaN is determined to be ~ 10 nm. The spectral measurements disclose that the photoluminescence (PL) from GaN/Si-NPA is composed of an ultraviolet (UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence (EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of GaN is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current (SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage.
|
Received: 25 March 2015
Revised: 25 April 2015
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Ei
|
(Rectification)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176044). |
Corresponding Authors:
Li Xin-Jian
E-mail: lixj@zzu.edu.cn
|
Cite this article:
Wang Xiao-Bo (王小波), Li Yong (李勇), Yan Ling-Ling (闫玲玲), Li Xin-Jian (李新建) Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array 2015 Chin. Phys. B 24 107304
|
[1] |
Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
|
[2] |
Chang S J, Kuo C H, Su Y K, Wu L W, Sheu J K, Wen T C, Lai W C, Chen J F and Tsai J M 2002 IEEE J. Sel. Top. Quantum Electron. 8 744
|
[3] |
Nakamura S, Senoh M, Nagahama S-i, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M and Chocho K 1998 Appl. Phys. Lett. 72 211
|
[4] |
Okamoto K, Kashiwagi J, Tanaka T and Kubota M 2009 Appl. Phys. Lett. 94 071105
|
[5] |
Munoz E, Monroy E, Pau J L, Calle F, Omnes F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
|
[6] |
Pearton S J, Kang B S, Kim S, Ren F, Gila B P, Abernathy C R, Lin J and Chu S N G 2004 J. Phys.: Condens. Matter 16 R961
|
[7] |
Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
|
[8] |
Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
|
[9] |
Lester S D, Ponce F A, Craford M G and Steigerwald D A 1995 Appl. Phys. Lett. 66 1249
|
[10] |
Kazior T E 2014 Philosoph. Trans. Series A, Math. Phys. Eng. Sci. 372 20130105
|
[11] |
Moutanabbir O and Gösele U 2010 Ann. Rev. Mater. Res. 40 469
|
[12] |
Funato M, Fujita S and Fujita S 2000 Appl. Phys. Lett. 77 3959
|
[13] |
Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501
|
[14] |
Hersee S D, Zubia D, Sun X Y, Bommena R, Fairchild M, Zhang S, Burckel D, Frauenglass A and Brueck S R J 2002 IEEE J. Quantum Electron. 38 1017
|
[15] |
Tang Y B, Bo X H, Lee C S, Cong H T, Cheng H M, Chen Z H, Zhang W J, Bello I and Lee S T 2008 Adv. Funct. Mater. 18 3515
|
[16] |
Manna S, Ashok V D and De S K 2010 ACS Appl. Mater. Interf. 2 3539
|
[17] |
Tang Y B, Chen Z H, Song H S, Lee C S, Cong H T, Cheng H M, Zhang W J, Bello I and Lee S T 2008 Nano Lett. 8 4191
|
[18] |
Saron K M A and Hashim M R 2013 Superlattices and Microstructures 56 55
|
[19] |
Li F, Lee S H, You J H, Kim T W, Lee K H, Lee J Y, Kwon Y H and Kang T W 2010 J. Cryst. Growth 312 2320
|
[20] |
Xu H J and Li X J 2008 Opt. Express 16 2933
|
[21] |
Li X J, Chen S J and Feng C Y 2007 Sen. Actuat. B-Chem. 123 461
|
[22] |
Li X J and Jiang W F 2007 Nanotechnology 18 065203
|
[23] |
Feng F, Zhi G, Jia H S, Cheng L, Tian Y T and Li X J 2009 Nanotechnology 20 295501
|
[24] |
He C, Han C B, Xu Y R and Li X J 2011 J. Appl. Phys. 110 094316
|
[25] |
Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
|
[26] |
Li M, Li C, Wang F and Zhang W 2006 Intermetallics 14 826
|
[27] |
Park E, Shim S, Ha R, Oh E, Lee B W and Choi H J 2011 Mater. Lett. 65 2458
|
[28] |
Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
|
[29] |
Zhang X B, Taliercio T, Kolliakos S and Lefebvre P 2001 J. Phys.: Condens. Matter 13 7053
|
[30] |
Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
|
[31] |
Sheu J K, Su Y K, Chi G C, Jou M J and Chang C M 1998 Appl. Phys. Lett. 72 3317
|
[32] |
Sugiyama K, Ishii H, Ouchi Y and Seki K 2000 J. Appl. Phys. 87 295
|
[33] |
Sheu J K, Su Y K, Chi G C, Jou M J, Liu C C and Chang C M 1999 Solid State Electron. 43 2081
|
[34] |
Foresi J S and Moustakas T D 1993 Appl. Phys. Lett. 62 2859
|
[35] |
Elhouichet H, Moadhen A, Oueslati M, Romdhane S, Roger J A and Bouchriha H 2005 Phys. Status Solidi C 2 3349
|
[36] |
Hall H P, Awaah M A and Das K 2004 Phys. Status Solidi 201 522
|
[37] |
Pankove J I and Schade H 1974 Appl. Phys. Lett. 25 53
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|