Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104208    DOI: 10.1088/1674-1056/24/10/104208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entanglements in a coupled cavity-array with one oscillating end-mirror

Wu Qin (吴琴)a b, Xiao Yin (肖银)a, Zhang Zhi-Ming (张智明)a
a Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
b School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
Abstract  We theoretically investigate the entanglement properties in a hybrid system consisting of an optical cavity-array coupled to a mechanical resonator. We show that the steady state of the system presents bipartite continuous variable entanglement in an experimentally accessible parameter regime. The effects of the cavity-cavity coupling strength on the bipartite entanglements in the field-mirror subsystem and in the field-field subsystem are studied. We further find that the entanglement between the adjacent cavity and the movable mirror can be entirely transferred to the distant cavity and mirror by properly choosing the cavity detunings and the coupling strength in the two-cavity case. Surprisingly, such a remote macroscopic entanglement tends to be stable in the large coupling regime and persists for environment temperatures at above 25 K in the three-cavity case. Such optomechanical systems can be used for the realization of continuous variable quantum information interfaces and networks.
Keywords:  entanglement      coupled-cavity array      optomechanical system  
Received:  06 March 2015      Revised:  21 April 2015      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012 and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholar and Innovative Research Team in Universities, China (Grant No. IRT1243).
Corresponding Authors:  Zhang Zhi-Ming     E-mail:  zmzhang@scnu.edu.cn

Cite this article: 

Wu Qin (吴琴), Xiao Yin (肖银), Zhang Zhi-Ming (张智明) Entanglements in a coupled cavity-array with one oscillating end-mirror 2015 Chin. Phys. B 24 104208

[1] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information(Cambridge: Cambridge University Press)
[2] Horodechi R, Horodecki P, Horodecki M andHorodecki K 2009 Rev. Mod. Phys. 81 865
[3] Zurek W H 2003 Rev. Mod. Phys. 75 715
[4] Friedman J R, Patel V, Chen W, Tolpygo S K and Lukens J E 2000 Nature 406 43
[5] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
[6] Brown K R, Ospelkaus C, Colombe Y, et al. 2011 Nature 471 196
[7] Liao J Q and Law C K 2011 Phys. Rev. A 83 033820
[8] Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
[9] Zhang D and Zheng Q 2013 Chin. Phys. Lett. 30 024213
[10] Shi Z S, Xia Y and Song J 2013 Quantum Inf. Process. 12 3179
[11] Dalafi A, Naderi M H, Soltanolkotabi M and Barzanjeh Sh 2013 J. Phys. B: At. Mol. Opt. Phys. 46 235502
[12] Asjad M, Shahzad M A and Saif F 2013 Eur. Phys. J. D 67 198
[13] Sete E A and Eleuch H 2014 Phys. Rev. A 89 013841
[14] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[15] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[16] Joshi C, Larson J, Jonson M, Andersson E and Ohbreg P 2012 Phys. Rev. A 85 033805
[17] Akram U, Munro W, Nemoto K and Milburn G J 2012 Phys. Rev. A 86 042306
[18] Mi X W, Bai J X and Song K H 2013 Eur. Phys. J. D 67 115
[19] Zhang D, Zhang X P and Zheng Q 2013 Chin. Phys. B 22 064206
[20] Ma Y H and Wu E 2015 Int. J. Theor. Phys. 54 1334
[21] Joshi C, Akram U and Milburn G J 2014 New. J. Phys. 16 023009
[22] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[23] Ge W C, Al-Amri M, Nha H and Zubairy M S 2013 Phys. Rev. A 88 022338
[24] Huang S and Agarwal G S 2009 New. J. Phys. 11 103044
[25] Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. Lett. 90 137901
[26] Pirandola S, Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. A 68 062317
[27] Pirandola S, Mancini S, Vitali D and Tombesi P 2004 J. Mod. Opt. 51 901
[28] Pirandola S, Vitali D, Tombesi P and Lloyd S 2006 Phys. Rev. Lett. 97 150403
[29] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[30] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
[31] Hartmann M J, Brandão F G S L and Plenio M B 2006 Nat. Phys. 2 849
[32] Hartmann M J, Brandão F G S L and Plenio M B 2008 Laser Photon. Rev. 2 527
[33] Yönac M, Yu T and Eberly H J 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[34] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[35] Kleckner D, Marshall W, Dood M, et al. 2006 Phys. Rev. Lett. 96 173901
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!