Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104209    DOI: 10.1088/1674-1056/24/10/104209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

Huang Wei-Qi (黄伟其)a, Huang Zhong-Mei (黄忠梅)c, Miao Xin-Jian (苗信建)a, Liu Shi-Rong (刘世荣)b, Qin Chao-Jian (秦朝建)b
a Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China;
b State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China;
c Surface Physics Laboratory, Department of Physics, Fudan University, Shanghai 200433, China
Abstract  The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.
Keywords:  plasma lattice structures      Purcell cavity      plasmonic emission  
Received:  31 January 2015      Revised:  17 April 2015      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.45.+h (Stimulated emission)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).
Corresponding Authors:  Huang Wei-Qi     E-mail:  sci.wqhuang@gzu.edu.cn

Cite this article: 

Huang Wei-Qi (黄伟其), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建) Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon 2015 Chin. Phys. B 24 104209

[1] Goldman J R and Prybyla J A 1994 Phys. Rev. Lett. 72 1364
[2] Sabbah A J and Riffe D M 2002 Phys. Rev. B 66 165217
[3] De Boer W D A M, Timmerman D, Dohnalova K, Yassievich I N, Zhang H, Buma W J and Gregorkiewicz T 2010 Nat. Nanotech. 5 878
[4] Chang-Hee C, Carlos O A, Joohee P and Ritesh A 2013 Nat. Photon. 7 285
[5] Purcell E M 1946 Phys. Rev. 69 681
[6] Fujita M, Tanaka Y and Noda S 2008 IEEE J. Sel. Top. Quantum Electron. 14 1090
[7] Lo Savio R, Portalupi S L, Gerace D, Shakoor A, Kruass T F, O'Faolain L, Andreani L C and Galli M 2011 Appl. Phys. Lett. 98 201106
[8] Cho C H, Aspetti C O, Turk M E, Kikkawa J M, Nam S W and Agarwal R 2011 Nat. Mater. 10 669
[9] Huang W Q, Xu L, Wu K Y and Liu S R 2007 J. Appl. Phys. 102 053517
[10] Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vučović J 2005 Phys. Rev. Lett. 95 013904
[11] Baba T and Sano D 2003 IEEE J. Sel. Top. Quantum Electron. 9 1340
[12] Ryu H Y and Notomi M 2003 Opt. Lett. 28 2390
[13] Grimes C C and Adams G 1979 Phys. Rev. Lett. 42 795
[14] Huang W Q, Liu S R, Qin C J and Lv Q 2011 Opt. Commun. 284 1992
[15] Huang W Q, Huang Z M, Chen H Q, Miao X J, Liu S R and Qin C J 2012 Appl. Phys. Lett. 101 171601
[16] Wigner E 1938 Trans. Faraday Soc. 34 678
[17] Khurana A 1990 Phys. Today 43 9 17
[18] Halperin B I 1983 Helv. Phys. Acta 56 75
[19] Li L L and Xu W 2014 Appl. Phys. Lett. 104 111603
[20] Huang W Q, Miao X J, Huang Z M, Liu S R and Qin C J 2012 Chin. Phys. B 21 094207
[1] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[2] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[3] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[4] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[5] Watt-level, green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency
Hang-Hang Yu(俞航航), Zhi-Tao Zhang(张志韬), and Hong-Wen Xuan(玄洪文). Chin. Phys. B, 2022, 31(12): 124203.
[6] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[7] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[8] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[9] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[10] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[11] A scanning distortion correction method based on X- Y galvanometer Lidar system
Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(4): 044206.
[12] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[13] Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers
Ya Wen(温雅), Zhen Fan(范震), Lin-Hao Shang(尚林浩), Guang-Yong Jin(金光勇), Wang Chao(王超), Xin-Yu Chen(陈薪羽), and Chun-Ting Wu(吴春婷). Chin. Phys. B, 2021, 30(3): 034206.
[14] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[15] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
No Suggested Reading articles found!