Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104207    DOI: 10.1088/1674-1056/24/10/104207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Movement of a millimeter-sized oil drop pushed by optical force

Zhang Li (张莉), She Wei-Long (佘卫龙)
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  We show experimentally that when an unfocused continuous wave (CW) laser beam is obliquely incident onto the surface of a millimeter-sized mineral oil drop on sucrose solution, it will exert a pushing force on the oil drop, making it move forwards along the surface of the sucrose solution. However, after a period of time, the oil drop stops moving. This can be explained as the phenomenon caused by the change of Abraham momentum, the optical gradient force, and friction together.
Keywords:  optical force      optical manipulation      the movement of a millimeter-sized oil drop  
Received:  22 January 2015      Revised:  03 April 2015      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.62.-b (Laser applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90921009 and 11274401).
Corresponding Authors:  She Wei-Long     E-mail:  shewl@mail.sysu.edu.cn

Cite this article: 

Zhang Li (张莉), She Wei-Long (佘卫龙) Movement of a millimeter-sized oil drop pushed by optical force 2015 Chin. Phys. B 24 104207

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Perkins T T 2009 Laser Photon. Rev. 3 203
[3] Ashkin A and Dziedzic J M 1987 Nature 330 769
[4] Svoboda K and Block S M 1994 Ann. Rev. Biophys. Struct. 23 247
[5] Eichenfield M, Michael C P, Perahia R and Painter O 2007 Nat. Photon. 1 416
[6] Eichenfield M, Camacho R, Chan J, Vahala K J and Painter O 2009 Nature 459 550
[7] Kippenberg T J and Vahala K j 2008 Science 321 1172
[8] Grier D G 2003 Nature 424 810
[9] Li M, Pernice W H P and Tang H X 2009 Nat. Nanotechnol. 4 377
[10] Li M, Pernice W H P, Xiong C, Baehr-Jones T, Hochberg M and Tang H X 2008 Nature 456 480
[11] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[12] Lin Q, Rosenberg J, Jiang X, Vahala K J and Painter O 2009 Phys. Rev. Lett. 103 103601
[13] Phillips W D 1998 Rev. Mod. Phys. 70 721
[14] Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68
[15] Guck J, Ananthakrishnan R, Moon T J, Cunningham C C and Käs J 2000 Phys. Rev. Lett. 84 5451
[16] Xin H B, Bao D H, Zhong F and Li B J 2013 Laser Phys. Lett. 10 036004
[17] Xu R, Xin H B and Li B J 2013 Appl. Phys. Lett. 103 014102
[18] Kajorndejnukul V, Ding W Q, Sukhov S, Qiu C W and Dogariu A 2013 Nat. Photon. 7 787
[19] Abraham M 1909 Rend. Circ. Mat. Palermo. 28 1
[20] Batchelor G K 1967 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press) pp. 14-20
[21] Hirose A and Dick R 2009 Can. J. Phys. 87 407
[22] Smith P W, Ashkin A and Tomlinson W J 1981 Opt. Lett. 6 284
[1] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[2] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[3] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[4] Tuning the intensity statistics of random speckle patterns
Fan Meng(孟凡), Yue Zhao(赵乐), Yun-Zuo Zhang(张云佐), Lei Huo(霍磊). Chin. Phys. B, 2019, 28(5): 057801.
[5] Theoretical analysis of optical force density distribution inside subwavelength-diameter optical fibers
Yun-Yuan Zhang(张运原), Hua-Kang Yu(虞华康), Xiang-Ke Wang(王向珂), Wan-Ling Wu(吴婉玲), Fu-Xing Gu(谷付星), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(10): 104210.
[6] Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides
Jiahui Lu(卢佳慧), Guanghui Wang(王光辉). Chin. Phys. B, 2016, 25(11): 117804.
[7] Optical manipulation of gold nanoparticles using an optical nanofiber
Li Ying (李英), Hu Yan-Jun (胡艳军). Chin. Phys. B, 2013, 22(3): 034206.
[8] Exact results on cavity cooling in a system of a two-level atom and a cavity field
Zhang Yu-Qing(张玉青), Tan Lei(谭磊), Zhu Zhong-Hua(朱中华), and Liu Li-Wei(刘利伟). Chin. Phys. B, 2010, 19(3): 033202.
No Suggested Reading articles found!