Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097201    DOI: 10.1088/1674-1056/24/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of CuPc and MoO3 co-evaporated layer on the conductivity of organic light emitting diodes

He Ze-Shang (何泽尚), Yu Hao-Miao (于浩淼), Peng Huan (彭欢), Hou Xiao-Yuan (侯晓远)
State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
Abstract  Devices with copper phthalocyanine (CuPc):molybdenum trioxide (MoO3) co-evaporated layer were fabricated and the current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured. It has been found that for a given voltage, the current of the device with a co-evaporated layer is higher than those without the co-evaporated layer and it reaches the highest value if the ratio of MoO3 to CuPc is 1:1. Meanwhile, the C-V characteristics showed that only free holes exist in the function layer consisting of pure CuPc. However, charge transfer (CT) complexes exist in the function layer of a CuPc:MoO3 mixture. The charge transfer complexes do not contribute to the transport of the device efficiently under low applied fields but are disassociated into free carriers rapidly at applied fields higher than 1.7× 105 V/cm, which greatly increases the conductivity.
Keywords:  CuPc      MoO3      conductivity      capacitance  
Received:  03 February 2015      Revised:  03 April 2015      Accepted manuscript online: 
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  81.05.Fb (Organic semiconductors)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the Science and Technology Commission of Shanghai Municipality, China, the National Science and Technology Major Project of the Ministry of Science and Technology of China, and the National Natural Science Foundation of China.
Corresponding Authors:  Hou Xiao-Yuan     E-mail:  xyhou@fudan.edu.cn

Cite this article: 

He Ze-Shang (何泽尚), Yu Hao-Miao (于浩淼), Peng Huan (彭欢), Hou Xiao-Yuan (侯晓远) Effect of CuPc and MoO3 co-evaporated layer on the conductivity of organic light emitting diodes 2015 Chin. Phys. B 24 097201

[1] Blochwitz J, Pfeiffer M, Fritz T and Leo K 1998 Appl. Phys. Lett. 73 729
[2] Kim Y H, Sachse C, Machala M L, May C, Müller-Meskamp L and Leo K 2011 Adv. Funct. Mater. 21 1076
[3] Pfeiffer M, Leo K, Zhou X, Huang J, Hofmann M, Werner A and Blochwitz-Nimoth J 2003 Org. Electron. 4 89
[4] Xu-Xie H N, Li W B, Peng H, He Y, Yu H M and Hou X Y 2014 Chin. Phys. B 23 047202
[5] Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2013 Chin. Phys. B 22 128402
[6] Kulkarni A P, Tonzola C J, Babel A and Jenekhe S 2004 Chem. Mater. 16 4556
[7] Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M, Vogel D E and Theiss S D 2004 Chem. Mater. 16 4413
[8] Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T and Leo K 2001 Appl. Phys. Lett. 78 410
[9] Zhou X, Blochwitz J, Pfeiffer M, Nollau, Fritz T and Leo K 2001 Adv. Funct. Mater. 11 310
[10] Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Org. Electron. 10 932
[11] Lee J H, Kim H M, Kim K B and Kim J J 2011 Org. Electron. 12 950
[12] Lee J H, Leem D S and Kim J J 2010 Org. Electron. 11 486
[13] Leem D S, Park H D, Kang J W, Lee J H, Kim J W and Kim J J 2007 Appl. Phys. Lett. 91 011113
[14] Wang F, Qiao X, Xiong T and Ma D 2009 J. Appl. Phys. 105 084518
[15] Lv Y, Zhou P, Wei N, Peng K, Yu J, Wei B, Wang Z and Li C 2013 Org. Electron. 14 124
[16] Chang C C, Hsieh M T, Chen J F, Hwang S W and Chen C H 2006 Appl. Phys. Lett. 89 253504
[17] Guan M, Cao G, Chu X, Zhang Y, Liu X and Zeng Y 2013 Phys. Status Solidi 210 1178
[18] Li L, Guan M, Cao G, Li Y and Zeng Y 2012 Displays 33 17
[19] Cao G, Li L, Guan M, Zhao J, Li Y and Zeng Y 2011 Appl. Surf. Sci. 257 9382
[20] Qiao X, Chen J, Li X and Ma D 2010 J. Appl. Phys. 107 104505
[21] Lehnhardt M, Hamwi S, Hoping M, Reinker J, Riedl T and Kowalsky W 2010 Appl. Phys. Lett. 96 193301
[22] Meyer J, Hamwi S, Schmale S, Winkler T, Johannes H H, Riedl T and Kowalsky W 2009 J. Mater. Chem. 19 702
[23] Zhu F, Wang H, Song D, Lou K and Yan D 2008 Appl. Phys. Lett. 93 103308
[24] Kimerling L C 1974 J. Appl. Phys. 45 1839
[25] Yang J P, Bao Q Y, Xiao Y, Deng Y H, Li Y Q, Lee S T and Tang J X 2012 Org. Electron. 13 2243
[26] Chen Y, Chen J, Ma D, Yan D, Wang L and Zhu F 2011 Appl. Phys. Lett. 98 243309
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!