Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097106    DOI: 10.1088/1674-1056/24/9/097106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cubic ZnO films obtained at low pressure by molecular beam epitaxy

Wang Xiao-Dan (王小丹), Zhou Hua (周华), Wang Hui-Qiong (王惠琼), Ren Fei (任飞), Chen Xiao-Hang (陈晓航), Zhan Hua-Han (詹华瀚), Zhou Ying-Hui (周颖慧), Kang Jun-Yong (康俊勇)
Key Laboratory of Semiconductors and Applications of Fujian Province, Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  A zinc oxide thin film in cubic crystalline phase, which is usually prepared under high pressure, has been grown on the MgO (001) substrate by a three-step growth using plasma-assisted molecular beam epitaxy. The cubic structure is confirmed by in-situ reflection high energy electron diffraction measurements and simulations. The x-ray photoelectron spectroscopy reveals that the outer-layer surface of the film (less than 5 nm thick) is of ZnO phase while the buffer layer above the substrate is of ZnMgO phase, which is further confirmed by the band edge transmissions at the wavelengths of about 390 nm and 280 nm, respectively. The x-ray diffraction exhibits no peaks related to wurtzite ZnO phase in the film. The cubic ZnO film is presumably considered to be of the rock-salt phase. This work suggests that the metastable cubic ZnO films, which are of applicational interest for p-type doping, can be epitaxially grown on the rock-salt substrates without the usually needed high pressure conditions.
Keywords:  ZnO film      rock-salt structure      molecular beam epitaxy      reflection high energy electron diffraction  
Received:  30 March 2015      Revised:  03 June 2015      Accepted manuscript online: 
PACS:  71.55.Gs (II-VI semiconductors)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.-a (Thin film structure and morphology)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204253, U1232110, U1332105, 61227009, and 91321102), the Fundamental Research Funds for Central Universities, China (Grant No. 2013SH001), and the National High Technology Research and Development Program of China (Grant No. 2014AA052202).
Corresponding Authors:  Wang Hui-Qiong     E-mail:  hqwang@xmu.edu.cn

Cite this article: 

Wang Xiao-Dan (王小丹), Zhou Hua (周华), Wang Hui-Qiong (王惠琼), Ren Fei (任飞), Chen Xiao-Hang (陈晓航), Zhan Hua-Han (詹华瀚), Zhou Ying-Hui (周颖慧), Kang Jun-Yong (康俊勇) Cubic ZnO films obtained at low pressure by molecular beam epitaxy 2015 Chin. Phys. B 24 097106

[1] Robert T 2014 Prog. Cryst. Growth 60 1
[2] Hwang D K, Oh M S, Lim J H and Park S J 2007 J. Phys. D: Appl. Phys. 40 R387
[3] Özgür Ü, Alivov A I, Liu C, Teke A, Reshchikov M A, Do an S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[4] Sanchez-Valencia J R, Alcaire M, Romero-Gómez P, Macias-Montero M, Aparicio F, Borras A, Gonzalez-Elipe A and Barranco A 2014 J. Phys. Chem. C 118 9852
[5] Bang J, Kim Y S, Park C H, Gao F, and Zhang S B 2014 Appl. Phys. Lett. 104 252101
[6] Sougata P, Torben J T, Michael H and Eckhard P 2013 Phys. Rev. B 87 085445
[7] Kim S K, Jeong S Y and Cho C R 2003 Appl. Phys. Lett. 82 562
[8] Santosh M B 2012 Appl. Phys. Lett. 100 072101
[9] Mahlaga P M and Daniel P 2011 Phys. Rev. B 84 094110
[10] Ni H Q and Ren Z M 2002 J. Appl. Phys. 91 1339
[11] Liu H Z, Tse J S andMao H K 2006 J. Appl. Phys. 100 093509
[12] Ashrafi A and Jagadish C 2007 J. Appl. Phys. 102 071101
[13] Yoo Y Z, Osaka Y, Fukumura T, Jin Z, Kawasaki M, Koinuma H, Chikyow T, Ahmet P, Setoguchi A and Chichibu S F 2001 Appl. Phys. Lett. 78 616
[14] Martínez P L, Muñoz A N, Muñoz A S and Zelaya A O 2015 Mater. Lett. 139 63
[15] Kunisu M, Tanaka I, Yamamoto T, Suga T and Mizoguchi T 2004 J. Phys.: Condens. Matter 16 3801
[16] Decremps F, Piellicer-Porres J, Datchi F, Itie J P, Polian A and Baudelet F 2002 Appl. Phys. Lett. 81 4820
[17] Zhou H, Wang H Q, Wu L, Zhang L, Kisslinger K, Zhu Y, Chen X, Zhan H and Kang J 2011 Appl. Phys. Lett. 99 141917
[18] Zhou H, Wang H Q, Liao X X, Zhang Y, Zheng J C, Wang J O, Muhemmed E, Qian H J, Ibrahim K, Chen X, Zhan H and Kang J 2012 Nanoscale Res. Lett. 7 184
[19] Zhou H, Wang H Q, Li Y, Li K, Kang J, Zheng J C, Jiang Z, Huang Y, Wu L, Zhang L, Kisslinger K and Zhu Y 2014 ACS Appl. Mater. Interfaces 6 13823
[20] Anderson J and Chris G V D W 2009 Rep. Prog. Phys. 72 126501
[21] Wang K K and Smith R A 2011 Comput. Phys. Commun. 182 2208
[22] Geneste G, Morillo J and Finocchi F 2005 J. Chem. Phys. 122 174707
[23] Choa M W, Haradaa C, Suzukia H, Minegishia T, Yao T, Koc H, Maedad K and Nikurad I 2005 Supperlattice Microst. 38 349
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[6] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[7] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[8] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[9] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[10] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[11] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[14] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!