Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086802    DOI: 10.1088/1674-1056/24/8/086802
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

A review of the growth and structures of silicene on Ag (111)

Wu Ke-Hui (吴克辉)a b
a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

Ag (111) is currently the most often used substrate for growing silicene films. Silicene forms a variety of different phases on the Ag (111) substrate. However, the structures of these phases are still not fully understood so far. In this brief review we summarize the growth condition and resulting silicene phases on Ag (111), and discuss the most plausible structural model and electronic property of individual phases. The existing debates on silicene on Ag (111) system are clarified as mush as possible.

Keywords:  silicene      scanning tunneling microscopy      surface structure      Dirac fermion  
Received:  03 April 2015      Revised:  29 May 2015      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  71.20.Mq (Elemental semiconductors)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921703 and 2013CB921702), the National Natural Science Foundation of China (Grant No. 11334011), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

Corresponding Authors:  Wu Ke-Hui     E-mail:  khwu@aphy.iphy.ac.cn

Cite this article: 

Wu Ke-Hui (吴克辉) A review of the growth and structures of silicene on Ag (111) 2015 Chin. Phys. B 24 086802

[1] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[2] Guzmań-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[3] Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[4] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[5] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[6] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[7] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[8] Yamakage A, Ezawa M, Tanaka Y and Nagaosa N 2013 Phys. Rev. B 88 085322
[9] Sivek J, Sahin H, Partoens B and Peeters F M 2013 Phys. Rev. B 87 085444
[10] Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[11] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[12] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[13] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[14] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[15] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[16] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2012 Appl. Phys. Lett. 97 223109
[17] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[18] Chiappe D, Scalise E, Cinquanta E Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[19] Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S and Gao H J 2014 Adv. Mater. 26 4820
[20] Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[21] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[22] Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 Phys. Rev. B 87 235435
[23] Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714
[24] Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P and Dimoulas A 2013 Appl. Phys. Lett. 103 231604
[25] Gori P, Pulci O, Ronci F, Colonna S and Bechstedt F 2013 J. Appl. Phys. 114 113710
[26] Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
[27] Yuan Y, Quhe R G, Zheng J, Wang Y, Ni Z, Shi J and Lu J 2014 Physica E 58 38
[28] Quhe R G, Yuan Y, Zheng J, Wang Y, Ni Z, Shi J, Yu D, Yang J and Lu J 2014 Sci. Rep. 4 5476
[29] Feng B J, Li H, Liu C C, Shao T N, Cheng P, Yao Y G, Meng S, Chen L and Wu K H 2013 ACS Nano 7 9049
[30] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Chen L, Wu K and Meng S 2013 Phys. Rev. Lett. 110 85504
[31] Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
[32] Molle A, Grazianetti C, Chiappe D, Cinquanta E, Cianci E, Tallarida G and Fanciulli M 2013 Adv. Funct. Mater. 23 4340
[33] Friedlein R, Van Bui H, Wiggers F B, Yamada-Takamura Y, Kovalgin A Y and de Jong M P 2014 J. Chem. Phys. 140 204705
[34] Tao L, Cinguanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[35] Prévot G, Bernard R, Crugue H and Borensztein Y 2014 Appl. Phys. Lett. 105 213106
[36] Rahman M S, Nakagawa T and Mizuno S 2015 Jpn. J. Appl. Phys. 54 015502
[37] Mannix A J, Kiraly B Fisher B L Hersam M C and Guisinger N P 2014 ACS Nano 8 7538
[38] Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C H and Jia J F 2014 New J. Phys 16 075006
[39] Liu Z L, Wang M X, Liu C, Jia J F, Vogt P, Quaresima C, Ottaviani C, Olivieri B, De Padova P and Le Lay G 2014 APL Mater. 2 092513
[40] Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M and Takagi N 2013 Surf. Sci. 623 25
[41] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[42] N'Diaye A T, Bleikamp S, Feibelman P J and Michely T 2006 Phys. Rev. Lett. 97 215501
[43] Marchini S, Günther S and Wintterlin J 2007 Phys. Rev. B 76 075429
[44] Balog R, Jørgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315
[45] Moritz W, Wang B, Bocquet M L, Brugger T, Greber T, Wintterlin J and Günther S 2010 Phys. Rev. Lett. 104 136102
[46] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101
[47] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[48] Zheng F B and Zhang C W 2012 Nano. Res. Lett. 7 422
[49] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
[50] Feng Y et al. arxiv: 1503.06278
[51] Gao J F and Zhao J J 2012 Sci. Rep. 2 861
[52] Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter. 24 314211
[53] Jamgotchian H, Colignon Y, Hamzaoui N, et al. 2012 J. Phys.: Condens. Matter 24 172001
[54] Jamgotchian H, Ealet B, Colignon Y, Maradj H, Hoarau J Y, Biberian J P and Aufray B arxiv: 1412.4902.
[55] Chen J, Li W, Feng B, Cheng P, Qiu J, Chen L and Wu K arxiv: 1405.7534
[56] De Padova P, Avila J, Resta A, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Vogt P, Asensio M C and Le Lay G 2013 J. Phys.: Condens. Matter 25 382202
[57] De Padova P, Vogt P, Resta A, et al. 2013 Appl. Phys. Lett. 102 163106
[58] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[59] Shirai T, Shiraswaa T, Hirahara T, Fukui N, Takahashi T and S Hasegawa 2014 Phys. Rev. B 89 241403
[60] Chen J, Li W, Feng B, Cheng P, Qiu J, Chen L and Wu K unpublished
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[7] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[8] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[9] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[10] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[11] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[12] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[13] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[14] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[15] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
No Suggested Reading articles found!