Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097102    DOI: 10.1088/1674-1056/24/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials

H. A. Rahnamaye Aliabad
Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
Abstract  Advanced GGA+U (Hubbard) and modified Becke-Johnson (mBJ) techniques are used for the calculation of the structural, electronic, and optical parameters of α-Al2-xCoxO3 (x= 0.0, 0.167) compounds. The direct band gaps calculated by GGA and mBJ for pure alumina are 6.3 eV and 8.5 eV, respectively. The mBJ approximation provides results very close to the experimental one (8.7 eV). The substitution of Al with Co reduces the band gap of alumina. The wide and direct band gap of the doped alumina predicts that it can efficiently be used in optoelectronic devices. The optical properties of the compounds like dielectric functions and energy loss function are also calculated. The rhombohedral structure of the α-Al2-xCoxO3 (x= 0.0, 0.167) compounds reveal the birefringence properties.
Keywords:  density functional theory      Hubbard U      modified Becke-Johnson exchange potential      optoelectronic properties  
Received:  05 December 2014      Revised:  09 April 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.25.-b (Spin polarized transport)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  H. A. Rahnamaye Aliabad     E-mail:  Rahnama@hsu.ac.ir,rahnamaye@gmail.com

Cite this article: 

H. A. Rahnamaye Aliabad Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials 2015 Chin. Phys. B 24 097102

[1] Pari G, Mookerjeee A and Bhattacharya A K 2004 Physica B 353 192
[2] Das R N, Bandyopadhyay A and Bose S 2001 J. Am. Ceram. Soc. 84 2421
[3] Levin I and Brandon D 1998 J. Am. Ceram. Soc. 81 1995
[4] Zhu L H, Tu R R and Huang Q W 2012 Ceramics International 38 901
[5] Denis G., Rodriguez M G, Akselrod M S, Underwood T H and Yukihara E G 2011 Radiation Measurements 46 1457
[6] El-Shaarawy M G and Bayoumy W A A 2002 Materials Chemistry and Physics 78 405
[7] Yazdanmehr M, Jalali S, Nourmohammadi A, Gasemzadeh M and Rezvanian M 2012 Nanoscale Research Letters 7 488
[8] Shaffei M F, Abd El-Rehim S S, Shaaban N A and Huisen H S 2001 Renewable Energy 23 489
[9] Du X, Wang C, Wang T, Zhou L, Chen B and Ru N 2008 Thin Solid Films 516 3971
[10] Niklasson G A and Granqvist C G 1984 J. Appl. Phys. 55 3382
[11] Otero Areán C, Peñarroya Mentruit M, Escalona Platero E, Llabrés i Xamena F X and Parra J B 1999 Materials Letters 39 22
[12] Hosseini S M, Rahnamaye Aliabad H A and Kompany A 2005 Ceramics International 31 671
[13] Hosseini S M, Rahnamaye Aliabad H A and Kompany A 2005 Euro. Phys. J. B 43 439
[14] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k, An Augmented Plane Wave plus Local orbital Program for Calculating the Crystal Properties (Technical University of Wien in Austria, ISBN3-9501031-1-2)
[15] Godoy A L E, Bressiani J C and Bressiani A H A 2007 Acta Microscopica 16 209
[16] Petukhov A G, Mazin I I, Chioncel L and Lichtenstein A I 2003 Phy. Rev. B 67 153106
[17] Novak P, Kunes J, Chaput L and Pickett W E 2006 Phys. Stat. Sol. 243 563
[18] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[19] Madsen G K H and Novak P 2005 Europhys. Lett. 69 777
[20] Stevanovi V, Lany S, Zhang X and Zunger A 2012 Phys. Rev. B 85 115104
[21] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[22] French R H 1990 J. Am. Ceram. Soc. 73 477
[23] Ambrosch- Draxl C and Sofo J O 2006 Computer Physics Communications 175 1
[24] Lushchik A, Feldbach E, Kirm M, Liblik P, Lushchik Ch, Martinson I, Savikhin F and Zimmerer G 1999 Journal of Electron Spectroscopy and Related Phenomena 101 587
[25] Alay-e-Abbas S M, Sabir N, Saeed Y and Shaukat A 2010 J. Alloy. Compd. 503 10
[26] Yourdshahyan Y, Engberg U, Bengtsson L, Lundqvist B and Hammer B 1997 Phys. Rev. B 55 8721
[27] Oleinik I I, Yu Tsymbal E and Pettifor D G 2000 Phys. Rev. B 62 3952
[28] Yourdshahyan Y, Ruberto C, Halvarsson M, Bengtsson L, Langer V and Lundqvist B 1999 J. Am. Ceram. Soc. 82 1365
[29] French R H, Jones D J and Loughin S 1994 J. Am. Ceram. Soc. 77 412
[30] French R H, Mullejans H and Jones D J 1998 J. Am. Ceram. Soc. 81 2549
[31] Ahuja R, Osorio-Guillen J M, Almeida J S, Holm B, Ching W Y and Johansson B 2004 J. Phys.: Condens. Matter 16 2891
[32] Ching W Y and Xu Y N 1994 J. Am. Ceram. Soc. 77 404
[33] Tews W and Grundler R 1982 Phys. Stat. Sol. 109 255
[34] Lima A F, Dantas J M and Lalic M V 2012 J. Appl. Phys. 112 093709
[35] Austgen M, Koehl D, Zalden P, Kubart T, Nyberg T, Pflug A, Siemers M, Berg S and Wuttig M 2011 J. Phys. D: Appl. Phys. 44 345501
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!