CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials |
H. A. Rahnamaye Aliabad |
Department of Physics, Hakim Sabzevari University, Sabzevar, Iran |
|
|
Abstract Advanced GGA+U (Hubbard) and modified Becke-Johnson (mBJ) techniques are used for the calculation of the structural, electronic, and optical parameters of α-Al2-xCoxO3 (x= 0.0, 0.167) compounds. The direct band gaps calculated by GGA and mBJ for pure alumina are 6.3 eV and 8.5 eV, respectively. The mBJ approximation provides results very close to the experimental one (8.7 eV). The substitution of Al with Co reduces the band gap of alumina. The wide and direct band gap of the doped alumina predicts that it can efficiently be used in optoelectronic devices. The optical properties of the compounds like dielectric functions and energy loss function are also calculated. The rhombohedral structure of the α-Al2-xCoxO3 (x= 0.0, 0.167) compounds reveal the birefringence properties.
|
Received: 05 December 2014
Revised: 09 April 2015
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Corresponding Authors:
H. A. Rahnamaye Aliabad
E-mail: Rahnama@hsu.ac.ir,rahnamaye@gmail.com
|
Cite this article:
H. A. Rahnamaye Aliabad Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials 2015 Chin. Phys. B 24 097102
|
[1] |
Pari G, Mookerjeee A and Bhattacharya A K 2004 Physica B 353 192
|
[2] |
Das R N, Bandyopadhyay A and Bose S 2001 J. Am. Ceram. Soc. 84 2421
|
[3] |
Levin I and Brandon D 1998 J. Am. Ceram. Soc. 81 1995
|
[4] |
Zhu L H, Tu R R and Huang Q W 2012 Ceramics International 38 901
|
[5] |
Denis G., Rodriguez M G, Akselrod M S, Underwood T H and Yukihara E G 2011 Radiation Measurements 46 1457
|
[6] |
El-Shaarawy M G and Bayoumy W A A 2002 Materials Chemistry and Physics 78 405
|
[7] |
Yazdanmehr M, Jalali S, Nourmohammadi A, Gasemzadeh M and Rezvanian M 2012 Nanoscale Research Letters 7 488
|
[8] |
Shaffei M F, Abd El-Rehim S S, Shaaban N A and Huisen H S 2001 Renewable Energy 23 489
|
[9] |
Du X, Wang C, Wang T, Zhou L, Chen B and Ru N 2008 Thin Solid Films 516 3971
|
[10] |
Niklasson G A and Granqvist C G 1984 J. Appl. Phys. 55 3382
|
[11] |
Otero Areán C, Peñarroya Mentruit M, Escalona Platero E, Llabrés i Xamena F X and Parra J B 1999 Materials Letters 39 22
|
[12] |
Hosseini S M, Rahnamaye Aliabad H A and Kompany A 2005 Ceramics International 31 671
|
[13] |
Hosseini S M, Rahnamaye Aliabad H A and Kompany A 2005 Euro. Phys. J. B 43 439
|
[14] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k, An Augmented Plane Wave plus Local orbital Program for Calculating the Crystal Properties (Technical University of Wien in Austria, ISBN3-9501031-1-2)
|
[15] |
Godoy A L E, Bressiani J C and Bressiani A H A 2007 Acta Microscopica 16 209
|
[16] |
Petukhov A G, Mazin I I, Chioncel L and Lichtenstein A I 2003 Phy. Rev. B 67 153106
|
[17] |
Novak P, Kunes J, Chaput L and Pickett W E 2006 Phys. Stat. Sol. 243 563
|
[18] |
Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
|
[19] |
Madsen G K H and Novak P 2005 Europhys. Lett. 69 777
|
[20] |
Stevanovi V, Lany S, Zhang X and Zunger A 2012 Phys. Rev. B 85 115104
|
[21] |
Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
|
[22] |
French R H 1990 J. Am. Ceram. Soc. 73 477
|
[23] |
Ambrosch- Draxl C and Sofo J O 2006 Computer Physics Communications 175 1
|
[24] |
Lushchik A, Feldbach E, Kirm M, Liblik P, Lushchik Ch, Martinson I, Savikhin F and Zimmerer G 1999 Journal of Electron Spectroscopy and Related Phenomena 101 587
|
[25] |
Alay-e-Abbas S M, Sabir N, Saeed Y and Shaukat A 2010 J. Alloy. Compd. 503 10
|
[26] |
Yourdshahyan Y, Engberg U, Bengtsson L, Lundqvist B and Hammer B 1997 Phys. Rev. B 55 8721
|
[27] |
Oleinik I I, Yu Tsymbal E and Pettifor D G 2000 Phys. Rev. B 62 3952
|
[28] |
Yourdshahyan Y, Ruberto C, Halvarsson M, Bengtsson L, Langer V and Lundqvist B 1999 J. Am. Ceram. Soc. 82 1365
|
[29] |
French R H, Jones D J and Loughin S 1994 J. Am. Ceram. Soc. 77 412
|
[30] |
French R H, Mullejans H and Jones D J 1998 J. Am. Ceram. Soc. 81 2549
|
[31] |
Ahuja R, Osorio-Guillen J M, Almeida J S, Holm B, Ching W Y and Johansson B 2004 J. Phys.: Condens. Matter 16 2891
|
[32] |
Ching W Y and Xu Y N 1994 J. Am. Ceram. Soc. 77 404
|
[33] |
Tews W and Grundler R 1982 Phys. Stat. Sol. 109 255
|
[34] |
Lima A F, Dantas J M and Lalic M V 2012 J. Appl. Phys. 112 093709
|
[35] |
Austgen M, Koehl D, Zalden P, Kubart T, Nyberg T, Pflug A, Siemers M, Berg S and Wuttig M 2011 J. Phys. D: Appl. Phys. 44 345501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|