INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Redox-mediated reversible modulation of the photoluminescence of single quantum dots |
Li Ying (李颖)a, Liu Ren-Wei (刘仁威)a b, Ma Li (马丽)a, Fan Su-Na (范苏娜)a b, Li Hui (李辉)a, Hu Shu-Xin (胡书新)a, Li Ming (李明)a |
a Beijing National Laboratory for Condensed Matter Physics and Chinese Academy of Sciences Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b College of Materials Science and Engineering, Jilin University, Changchun 130023, China |
|
|
Abstract Precise control over the photoluminescence (PL) of single quantum dots (QDs) is important for their practical applications. We show that the PL of individual CdSe/ZnS core/shell QDs can be effectively enhanced and continuously modulated by electrochemically manipulating the electron transfer (ET) between the QDs and the attached redox-active ligands such as 2-mercaptoethanol (BME). We found that i) the ET from BME to the QDs' surface trap states suppresses the blinking of the QDs, ii) the ET from the QDs' conduction band to the oxidization product results in dimmed PL when BME is oxidized, and iii) further oxidization of BME results in a significant PL brightening. The single particle measurements help us unveil the important features hidden in ensemble measurements and understand the underlying mechanism of the PL modulation. The results also suggest a simple yet efficient method to produce bright and non-blinking QDs and offer opportunities for further development of high resolution fluorescent bioimaging and nanodevices.
|
Received: 04 May 2015
Revised: 11 May 2015
Accepted manuscript online:
|
PACS:
|
82.37.Vb
|
(Single molecule photochemistry)
|
|
73.21.La
|
(Quantum dots)
|
|
34.70.+e
|
(Charge transfer)
|
|
92.20.cj
|
(Oxidation and reduction reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904164, 61275192, and 11104328). |
Corresponding Authors:
Hu Shu-Xin
E-mail: hushuxin@iphy.ac.cn
|
Cite this article:
Li Ying (李颖), Liu Ren-Wei (刘仁威), Ma Li (马丽), Fan Su-Na (范苏娜), Li Hui (李辉), Hu Shu-Xin (胡书新), Li Ming (李明) Redox-mediated reversible modulation of the photoluminescence of single quantum dots 2015 Chin. Phys. B 24 078202
|
[1] |
Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
|
[2] |
Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S and Weiss S 2005 Science 307 538
|
[3] |
Shen J H, Zhu Y H, Yang X L and Li C Z 2012 Chem. Commun. 48 3686
|
[4] |
Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
|
[5] |
Faraon A, Majumdar A, Kim H, Petroff P and Vučković J 2010 Phys. Rev. Lett. 104 047402
|
[6] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
|
[7] |
Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 5026
|
[8] |
Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
|
[9] |
Miller J B, Van Sickle A R, Anthony R J, Kroll D M, Kortshagen U R and Hobbie E K 2012 ACS Nano 6 7389
|
[10] |
Maikov G I, Vaxenburg R, Sashchiuk A and Lifshitz E 2010 ACS Nano 4 6547
|
[11] |
Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W and Peng X 2012 J. Am. Chem. Soc. 134 19685
|
[12] |
Yildiz I, Deniz E and Raymo F M 2009 Chem. Soc. Rev. 38 1859
|
[13] |
Qin B, Chen H Y, Liang H, Fu L, Liu X F, Qiu X H, Liu S Q, Song R and Tang Z Y 2010 J. Am. Chem. Soc. 132 2886
|
[14] |
Lim S J, An B K, Jung S D, Chung M A and Park S Y 2004 Angew. Chem. Int. Ed. 43 6346
|
[15] |
Wang B, Yin Z D, Bi L H and Wu L X 2010 Chem. Commun. 46 7163
|
[16] |
Tong X and Zhao Y 2007 J. Am. Chem. Soc. 129 6372
|
[17] |
Dai Z, Kawde A N, Xiang Y, La Belle J T, Gerlach J, Bhavanandan V P, Joshi L and Wang J 2006 J. Am. Chem. Soc. 128 10018
|
[18] |
Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B and Mauro J M 2003 Nat. Mater. 2 630
|
[19] |
Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
|
[20] |
Zhang C Y, Yeh H C, Kuroki M T and Wang T H 2005 Nat. Mater. 4 826
|
[21] |
Nazzal A Y, Qu L H, Peng X G and Xiao M 2003 Nano. Lett. 3 819
|
[22] |
McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J, Levina L and Sargent E H 2005 Nat. Mater. 4 138
|
[23] |
Robel I, Subramanian V, Kuno M and Kamat P V 2006 J. Am. Chem. Soc. 128 2385
|
[24] |
Barea E M, Shalom M, Gimenez S, Hod I, Mora-Sero I, Zaban A and Bisquert J 2010 J. Am. Chem. Soc. 132 6834
|
[25] |
Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
|
[26] |
Jin L H, Fang Y X, Wen D, Wang L, Wang E K and Dong S J 2011 ACS Nano 5 5249
|
[27] |
Motiei L, Lahav M, Freeman D and van der Boom M E 2009 J. Am. Chem. Soc. 131 3468
|
[28] |
Richards C I, Hsiang J C, Senapati D, Patel S, Yu J H, Vosch T and Dickson R M 2009 J. Am. Chem. Soc. 131 4619
|
[29] |
Li A D Q, Zhan C L, Hu D H, Wan W and Yao J N 2011 J. Am. Chem. Soc. 133 7628
|
[30] |
Kilina S, Ivanov S and Tretiak S 2009 J. Am. Chem. Soc. 131 7717
|
[31] |
Schafer S, Wang Z, Kipp T and Mews A 2011 Phys. Rev. Lett. 107 137403
|
[32] |
Park S J, Link S, Miller W L, Gesquiere A and Barbara P F 2007 Chem. Phys. 341 169
|
[33] |
Medintz I L, Trammell S A, Mattoussi H and Mauro J M 2004 J. Am. Chem. Soc. 126 30
|
[34] |
Jha P P and Guyot-Sionnest P 2010 J. Phys. Chem. C 114 21138
|
[35] |
Qin W and Guyot-Sionnest P 2012 ACS Nano 6 9125
|
[36] |
Qin W, Shah R A and Guyot-Sionnest P 2012 ACS Nano 6 912
|
[37] |
Hohng S and Ha T 2004 J. Am. Chem. Soc. 126 1324
|
[38] |
Rinehart J D, Weaver A L and Gamelin D R 2012 J. Am. Chem. Soc. 134 16175
|
[39] |
Weaver A L and Gamelin D R 2012 J. Am. Chem. Soc. 134 6819
|
[40] |
Gratzel M 2001 Nature 414 338
|
[41] |
Nadeau J L, Carlini L, Suffern D, Ivanova O and Bradforth S E 2012 J. Phys. Chem. C 116 2728
|
[42] |
Kahn M L, Glaria A, Pages C, Monge M, Saint M L, Maisonnat A and Chaudret B 2009 J. Mater. Chem. 19 4044
|
[43] |
Mahapatra N, Panja S, Mandal A and Haider M 2014 J. Mater. Chem. C 2 7373
|
[44] |
Marcus R A 1956 J. Chem. Phys. 24 966
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|