Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078202    DOI: 10.1088/1674-1056/24/7/078202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Redox-mediated reversible modulation of the photoluminescence of single quantum dots

Li Ying (李颖)a, Liu Ren-Wei (刘仁威)a b, Ma Li (马丽)a, Fan Su-Na (范苏娜)a b, Li Hui (李辉)a, Hu Shu-Xin (胡书新)a, Li Ming (李明)a
a Beijing National Laboratory for Condensed Matter Physics and Chinese Academy of Sciences Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b College of Materials Science and Engineering, Jilin University, Changchun 130023, China
Abstract  Precise control over the photoluminescence (PL) of single quantum dots (QDs) is important for their practical applications. We show that the PL of individual CdSe/ZnS core/shell QDs can be effectively enhanced and continuously modulated by electrochemically manipulating the electron transfer (ET) between the QDs and the attached redox-active ligands such as 2-mercaptoethanol (BME). We found that i) the ET from BME to the QDs' surface trap states suppresses the blinking of the QDs, ii) the ET from the QDs' conduction band to the oxidization product results in dimmed PL when BME is oxidized, and iii) further oxidization of BME results in a significant PL brightening. The single particle measurements help us unveil the important features hidden in ensemble measurements and understand the underlying mechanism of the PL modulation. The results also suggest a simple yet efficient method to produce bright and non-blinking QDs and offer opportunities for further development of high resolution fluorescent bioimaging and nanodevices.
Keywords:  quantum dots      photoluminescence modulation      redox      electron transfer  
Received:  04 May 2015      Revised:  11 May 2015      Accepted manuscript online: 
PACS:  82.37.Vb (Single molecule photochemistry)  
  73.21.La (Quantum dots)  
  34.70.+e (Charge transfer)  
  92.20.cj (Oxidation and reduction reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904164, 61275192, and 11104328).
Corresponding Authors:  Hu Shu-Xin     E-mail:  hushuxin@iphy.ac.cn

Cite this article: 

Li Ying (李颖), Liu Ren-Wei (刘仁威), Ma Li (马丽), Fan Su-Na (范苏娜), Li Hui (李辉), Hu Shu-Xin (胡书新), Li Ming (李明) Redox-mediated reversible modulation of the photoluminescence of single quantum dots 2015 Chin. Phys. B 24 078202

[1] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
[2] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S and Weiss S 2005 Science 307 538
[3] Shen J H, Zhu Y H, Yang X L and Li C Z 2012 Chem. Commun. 48 3686
[4] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[5] Faraon A, Majumdar A, Kim H, Petroff P and Vučković J 2010 Phys. Rev. Lett. 104 047402
[6] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[7] Chen Y, Vela J, Htoon H, Casson J L, Werder D J, Bussian D A, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 5026
[8] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
[9] Miller J B, Van Sickle A R, Anthony R J, Kroll D M, Kortshagen U R and Hobbie E K 2012 ACS Nano 6 7389
[10] Maikov G I, Vaxenburg R, Sashchiuk A and Lifshitz E 2010 ACS Nano 4 6547
[11] Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W and Peng X 2012 J. Am. Chem. Soc. 134 19685
[12] Yildiz I, Deniz E and Raymo F M 2009 Chem. Soc. Rev. 38 1859
[13] Qin B, Chen H Y, Liang H, Fu L, Liu X F, Qiu X H, Liu S Q, Song R and Tang Z Y 2010 J. Am. Chem. Soc. 132 2886
[14] Lim S J, An B K, Jung S D, Chung M A and Park S Y 2004 Angew. Chem. Int. Ed. 43 6346
[15] Wang B, Yin Z D, Bi L H and Wu L X 2010 Chem. Commun. 46 7163
[16] Tong X and Zhao Y 2007 J. Am. Chem. Soc. 129 6372
[17] Dai Z, Kawde A N, Xiang Y, La Belle J T, Gerlach J, Bhavanandan V P, Joshi L and Wang J 2006 J. Am. Chem. Soc. 128 10018
[18] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B and Mauro J M 2003 Nat. Mater. 2 630
[19] Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
[20] Zhang C Y, Yeh H C, Kuroki M T and Wang T H 2005 Nat. Mater. 4 826
[21] Nazzal A Y, Qu L H, Peng X G and Xiao M 2003 Nano. Lett. 3 819
[22] McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J, Levina L and Sargent E H 2005 Nat. Mater. 4 138
[23] Robel I, Subramanian V, Kuno M and Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[24] Barea E M, Shalom M, Gimenez S, Hod I, Mora-Sero I, Zaban A and Bisquert J 2010 J. Am. Chem. Soc. 132 6834
[25] Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[26] Jin L H, Fang Y X, Wen D, Wang L, Wang E K and Dong S J 2011 ACS Nano 5 5249
[27] Motiei L, Lahav M, Freeman D and van der Boom M E 2009 J. Am. Chem. Soc. 131 3468
[28] Richards C I, Hsiang J C, Senapati D, Patel S, Yu J H, Vosch T and Dickson R M 2009 J. Am. Chem. Soc. 131 4619
[29] Li A D Q, Zhan C L, Hu D H, Wan W and Yao J N 2011 J. Am. Chem. Soc. 133 7628
[30] Kilina S, Ivanov S and Tretiak S 2009 J. Am. Chem. Soc. 131 7717
[31] Schafer S, Wang Z, Kipp T and Mews A 2011 Phys. Rev. Lett. 107 137403
[32] Park S J, Link S, Miller W L, Gesquiere A and Barbara P F 2007 Chem. Phys. 341 169
[33] Medintz I L, Trammell S A, Mattoussi H and Mauro J M 2004 J. Am. Chem. Soc. 126 30
[34] Jha P P and Guyot-Sionnest P 2010 J. Phys. Chem. C 114 21138
[35] Qin W and Guyot-Sionnest P 2012 ACS Nano 6 9125
[36] Qin W, Shah R A and Guyot-Sionnest P 2012 ACS Nano 6 912
[37] Hohng S and Ha T 2004 J. Am. Chem. Soc. 126 1324
[38] Rinehart J D, Weaver A L and Gamelin D R 2012 J. Am. Chem. Soc. 134 16175
[39] Weaver A L and Gamelin D R 2012 J. Am. Chem. Soc. 134 6819
[40] Gratzel M 2001 Nature 414 338
[41] Nadeau J L, Carlini L, Suffern D, Ivanova O and Bradforth S E 2012 J. Phys. Chem. C 116 2728
[42] Kahn M L, Glaria A, Pages C, Monge M, Saint M L, Maisonnat A and Chaudret B 2009 J. Mater. Chem. 19 4044
[43] Mahapatra N, Panja S, Mandal A and Haider M 2014 J. Mater. Chem. C 2 7373
[44] Marcus R A 1956 J. Chem. Phys. 24 966
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[11] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[12] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[13] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[14] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[15] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
No Suggested Reading articles found!