Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of
Chinese Physics B |
Prev
Next
|
|
|
Anionic redox reaction mechanism in Na-ion batteries |
Xueyan Hou(侯雪妍)1, Xiaohui Rong(容晓晖)1,†, Yaxiang Lu(陆雅翔)1, and Yong-Sheng Hu(胡勇胜)1,2,‡ |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Na-ion batteries (NIBs), as one of the next-generation rechargeable battery systems, hold great potential in large-scale energy storage applications owing to the abundance and costeffectiveness of sodium resources. Despite the extensive exploration of electrode materials, the relatively low attainable capacity of NIBs hinders their practical application. In recent years, the anionic redox reaction (ARR) in NIBs has been emerging as a new paradigm to deliver extra capacity and thus offers an opportunity to break through the intrinsic energy density limit. In this review, the fundamental investigation of the ARR mechanism and the latest exploration of cathode materials are summarized, in order to highlight the significance of reversible anionic redox and suggest prospective developing directions.
|
Received: 23 April 2022
Revised: 12 July 2022
Accepted manuscript online: 18 July 2022
|
PACS:
|
88.80.ff
|
(Batteries)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
68.55.Nq
|
(Composition and phase identification)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725206 and 52002394) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500). |
Corresponding Authors:
Xiaohui Rong, Yong-Sheng Hu
E-mail: rong@iphy.ac.cn;yshu@iphy.ac.cn
|
Cite this article:
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜) Anionic redox reaction mechanism in Na-ion batteries 2022 Chin. Phys. B 31 098801
|
[1] Larcher D and Tarascon J M 2015 Nat. Chem. 7 19 [2] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338 [3] Hu Y S and Lu Y 2019 ACS Energy Lett. 4 2689 [4] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X and Chen L 2017 Energy Storage Mater. 7 130 [5] Yin Y X, Yao H R and Guo Y G 2016 Chin. Phys. B 25 018801 [6] Abraham K M 2020 ACS Energy Lett. 5 3544 [7] Zhao C, Wang Q, Lu Y, Hu Y S, Li B and Chen L 2017 J. Phys. D:Appl. Phys. 50 183001 [8] He S, Zhao J, Rong X, Xu C, Zhang Q, Shen X, Qi X, Li Y, Li X, Niu Y, Li X, Han S, Gu L, Liu H and Hu Y S 2022 Chem. Eng. J. 428 131083 [9] Shen X, Zhou Q, Han M, Qi X, Li B, Zhang Q, Zhao J, Yang C, Liu H and Hu Y S 2021 Nat. Commun. 12 2848 [10] Xu C, Zhao J, Wang E, Liu X, Shen X, Rong X, Zheng Q, Ren G, Zhang N, Liu X, Guo X, Yang C, Liu H, Zhong B and Hu Y S 2021 Adv. Energy Mater. 11 2100729 [11] Shen X, Han M, Li X, Zhang P, Yang C, Liu H, Hu Y and Zhao J 2022 ACS Appl. Mater. Interfaces 14 6841 [12] Guo G C, Wang C, Ming B M, Luo S W, Su H, Wang B Y, Zhang M, Yu H J and Wang R Z 2018 Chin. Phys. B 27 118801 [13] Delmas C, Fouassier C and Hagenmuller P 1980 Physica 99B 81 [14] Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202 [15] Ding Y, Ding F, Rong X, Lu Y and Hu Y S 2022 Chin. Phys. B 31 068201 [16] Liu Q, Hu Z, Li W, Zou C, Jin H, Wang S, Chou S and Dou S X 2021 Energy Environ. Sci. 14 158 [17] Ren H, Li Y, Ni Q, Bai Y, Zhao H and Wu C 2022 Adv. Mater. 34 2106171 [18] Xu H, Guo S and Zhou H 2019 J. Mater. Chem A 7 23662 [19] Assat G and Tarascon J M 2018 Nat. Energy 3 373 [20] Robertson A D and Bruce P G 2003 Chem. Mater. 15 1984 [21] Yu D Y W, Yanagida K, Kato Y and Nakamura H 2009 J. Electrochem. Soc. 156 A417 [22] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M and Bruce P G 2006 J. Am. Chem. Soc. 128 8694 [23] Seo D H, Lee J, Urban A, Malik R, Kang S and Ceder G 2016 Nat. Chem. 8 692 [24] Aydinol M K, Kohan A F and Ceder G 1997 Phys. Rev. B 56 1354 [25] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 [26] Meng Y S, Ceder G, Grey C P, Yoon W S, Jiang M, Bréger J and Shao-Horn Y 2005 Chem. Mater. 17 2386 [27] Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684 [28] Sauban'ere M, McCalla E, Tarascon J M and Doublet M L 2016 Energy Environ. Sci. 9 984 [29] Yahia M B, Vergnet J, Sauban'ere M and Doublet M L 2019 Nat. Mater. 18 496 [30] Okubo M and Yamada A 2017 ACS Appl. Mater. Interfaces 9 36463 [31] Sudayama T, Uehara K, Mukai T, Asakura D, Shi X M, Tsuchimoto A, de Boisse B M, Shimada T, Watanabe E, Harada Y, Nakayama M, Okubo M and Yamada A 2020 Energy Environ. Sci. 13 1492 [32] Tsuchimoto A, Shi X, Kawai K, de Boisse B M, Kikkawa J, Asakura D, Okubo M and Yamada A 2021 Nat. Commun. 12 631 [33] Kitchaev D A, Vinckeviciute J and Van der Ven A 2021 J. Am. Chem. Soc. 143 1908 [34] Song J H, Yoon G, Kim B, Eum D, Park H, Kim D H and Kang K 2020 Adv. Energy Mater. 10 2001207 [35] Zhang K, Jiang Z, Ning F, Li B, Shang H, Song J, Zuo Y, Yang T, Feng G, Ai X and Xia D 2021 Adv. Energy Mater. 11 2100892 [36] Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L and Hu Y S 2020 Science 370 708 [37] Maitra U, House R A, Somerville J W, Tapia-ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L, Pérez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X, McNally D E, Chadwick A V, Giustino F, Schmitt T, Duda L C, Roberts M R and Bruce P G 2018 Nat. Chem. 10 288 [38] Mu L, Xu S, Li Y, Hu Y S, Li H, Chen L and Huang X 2015 Adv. Mater. 27 6928 [39] Mu L, Qi X, Hu Y, Li H, Chen L and Huang X 2016 Energy Storage Sci. Technol. 5 324 [40] Li X, Bao J, Shadike Z, Wang Q, Yang X and Zhou Y 2021 Angew. Chem. Int. Ed. 60 22026 [41] Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C and Chen L 2019 Joule 3 503 [42] de la Llave E, Talaie E, Levi E, Nayak P K, Dixit M, Rao P T, Hartmann P, Chesneau F, Major D T, Greenstein M, Aurbach D and Nazar L F 2016 Chem. Mater. 28 9064 [43] Xiao B, Liu X, Chen X, Lee G, Song M, Yang X, Omenya F, Reed D M, Sprenkle V, Ren Y, Sun C, Yang W, Amine K, Li X, Xu G and Li X 2021 Adv. Mater. 33 2107141 [44] Ma X, Chen H and Ceder G 2011 J. Electrochem. Soc. 158 A1307 [45] Vassilaras P, Ma X, Li X and Ceder G 2013 J. Electrochem. Soc. 160 A207 [46] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11 512 [47] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636 [48] Tamaru M, Wang X, Okubo M and Yamada A 2013 Electrochem. Commun. 33 23 [49] de Boisse B M, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M and Yamada A 2016 Nat. Commun. 7 11397 [50] Perez A J, Batuk D, Sauban'ere M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, van den Bos K H W, Doublet M, Gonbeau D, Abakumov A M, Van Tendeloo G and Tarascon J 2016 Chem. Mater. 28 8278 [51] Rozier P, Sathiya M, Paulraj A, Foix D, Desaunay T, Taberna P, Simon P and Tarascon J 2015 Electrochem. Commun. 53 29 [52] Zhang X, Qiao Y, Guo S, Jiang K, Xu S, Xu H Wang P, He P and Zhou H 2019 Adv. Mater. 31 1807770 [53] Zhao C, Wang Q, Lu Y, Jiang L, Liu L, Yu X, Chen L, Li B and Hu Y S 2019 Energy Storage Mater. 20 395 [54] Rong X, Gao F, Lu Y, Yang K ang Hu Y 2018 Chin. Chem. Lett. 29 1791 [55] Zhang Y, Wu M, Ma J, Wei G, Ling Y, Zhang R and Huang Y 2020 ACS Cent. Sci. 6 232 [56] Lu Z and Dahn J R 2001 J. Electrochem. Soc. 148 A1225 [57] Du K, Zhu J, Hu G, Gao H, Li Y and Goodenough J B 2016 Energy Environ. Sci. 9 2575 [58] Adamczyk E and Pralong V 2017 Chem. Mater. 29 4645 [59] Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, Yu X, Page K, Hu Y S, Yang W, Li H, Yang X Q, Chen L and Huang X 2017 Joule 2 125 [60] de Boisse B M, Nishimura S, Watanabe E, Lander L, Tsuchimoto A, Kikkawa J, Kobayashi E, Asakura D, Okubo M and Yamada A 2018 Adv. Energy Mater. 8 1800409 [61] Dai K, Mao J, Zhuo Z, Feng Y, Mao W, Ai G, Pan F, Chuang Y, Liu G and Yang W 2020 Nano Energy 74 104831 [62] Zhang J, Wang W, Wang W, Wang S and Li B 2019 ACS Appl. Mater. Interfaces 11 22051 [63] House R A, Maitra U, Pérez-Osorio M A, Lozano J G, Jin L, Somerville J W, Duda L C, Nag A, Walters A, Zhou K J, Roberts M R and Bruce P G 2020 Nature 577 502 [64] Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y S and Gu L 2022 Nat. Sustain. 5 214 [65] Huang Y, Zhu Y, Nie A, Fu H, Hu Z, Sun X, Haw S C, Chen J M, Chan T S, Yu S, Sun G, Jiang G, Han J, Luo W and Huang Y 2022 Adv. Mater. 34 2105404 [66] Wang Q C, Meng J K, Yue X Y, Qiu Q Q, Song Y, Wu X J, Fu Z W, Xia Y Y, Shadike Z, Wu J, Yang X Q and Zhou Y N 2019 J. Am. Chem. Soc. 141 840 [67] Li Y, Lu Y, Chen L and Hu Y S 2020 Chin. Phys. B 29 048201 [68] Li X Y, Weng S T and Gu L 2020 Chin. Phys. B 29 028801 [69] de Groot F M F, Grioni M and Fuggle J C 1989 Phys. Rev. B 40 5715 [70] Roychoudhury S, Qiao R, Zhuo Z, Li Q, Lyu Y, Kim J, Liu J, Lee E, Polzin B J, Guo J, Yan S, Hu Y, Li H, Prendergast D and Yang W 2021 Energy Environ. Mater. 4 246 [71] Boivin E, House R A, Pérez-Osorio M A, Marie J J, Maitra U, Rees G J and Bruce P G 2021 Joule 5 1267 [72] Vergnet J, Saubanére M, Doublet M L and Tarascon J M 2020 Joule 4 420 [73] Sathiya M, Leriche J B, Salager E, Gourier D, Tarascon J M and Vezin H 2015 Nat. Commun. 6 6276 [74] Jia M, Li H, Qiao Y, Wang L, Cao X, Cabana J and Zhou H 2020 ACS Appl. Mater. Interfaces 12 38249 [75] Shang T, Xiao D, Zhang Q, Wang X, Su D and Gu L 2021 Chin. Phys. B 30 078202 [76] Fell C R, Qian D, Carroll K J, Chi M, Jones J L and Meng Y S 2013 Chem. Mater. 25 1621 [77] Zhao E, Zhang Z G, Li X, He L, Yu X, Li H and Wang F 2020 Chin. Phys. B 29 54 [78] Wang X, Tan S, Yang X Q and Hu E 2020 Chin. Phys. B 29 028802 [79] Carmichael R S 1989 Practical handbook of physical properties of rocks and minerals (CRC Press) [80] Eum D, Kim B, Song J H, Park H, Jang H Y, Kim S J, Cho S P, Lee M H, Heo J H, Park J, Ko Y, Park S K, Kim J, Oh K, Kim D H, Kang S J and Kang K 2022 Nat. Mater. 21 664 [81] Zhao C, Yao Z, Wang J, Lu Y, Bai X, Aspuru-Guzik A, Chen L and Hu Y S 2019 Chem. 5 2913 [82] Jiang L W, Lu Y X, Wang Y S, Liu L L, Qi X G, Zhao C L, Chen L Q and Hu Y S 2018 Chin. Phys. Lett. 35 048801 [83] Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H A and Zhou C 2016 Nano Energy 27 27 [84] Xie F, Lu Y, Chen L and Hu Y S 2021 Chin. Phys. Lett. 38 118401 [85] Hu Y S and Li Y 2021 ACS Energy Lett. 6 4115 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|