Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098801    DOI: 10.1088/1674-1056/ac81ab
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Anionic redox reaction mechanism in Na-ion batteries

Xueyan Hou(侯雪妍)1, Xiaohui Rong(容晓晖)1,†, Yaxiang Lu(陆雅翔)1, and Yong-Sheng Hu(胡勇胜)1,2,‡
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Na-ion batteries (NIBs), as one of the next-generation rechargeable battery systems, hold great potential in large-scale energy storage applications owing to the abundance and costeffectiveness of sodium resources. Despite the extensive exploration of electrode materials, the relatively low attainable capacity of NIBs hinders their practical application. In recent years, the anionic redox reaction (ARR) in NIBs has been emerging as a new paradigm to deliver extra capacity and thus offers an opportunity to break through the intrinsic energy density limit. In this review, the fundamental investigation of the ARR mechanism and the latest exploration of cathode materials are summarized, in order to highlight the significance of reversible anionic redox and suggest prospective developing directions.
Keywords:  energy storage      Na-ion battery      anionic redox reaction  
Received:  23 April 2022      Revised:  12 July 2022      Accepted manuscript online:  18 July 2022
PACS:  88.80.ff (Batteries)  
  82.47.Aa (Lithium-ion batteries)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.55.Nq (Composition and phase identification)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725206 and 52002394) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500).
Corresponding Authors:  Xiaohui Rong, Yong-Sheng Hu     E-mail:  rong@iphy.ac.cn;yshu@iphy.ac.cn

Cite this article: 

Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜) Anionic redox reaction mechanism in Na-ion batteries 2022 Chin. Phys. B 31 098801

[1] Larcher D and Tarascon J M 2015 Nat. Chem. 7 19
[2] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
[3] Hu Y S and Lu Y 2019 ACS Energy Lett. 4 2689
[4] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X and Chen L 2017 Energy Storage Mater. 7 130
[5] Yin Y X, Yao H R and Guo Y G 2016 Chin. Phys. B 25 018801
[6] Abraham K M 2020 ACS Energy Lett. 5 3544
[7] Zhao C, Wang Q, Lu Y, Hu Y S, Li B and Chen L 2017 J. Phys. D:Appl. Phys. 50 183001
[8] He S, Zhao J, Rong X, Xu C, Zhang Q, Shen X, Qi X, Li Y, Li X, Niu Y, Li X, Han S, Gu L, Liu H and Hu Y S 2022 Chem. Eng. J. 428 131083
[9] Shen X, Zhou Q, Han M, Qi X, Li B, Zhang Q, Zhao J, Yang C, Liu H and Hu Y S 2021 Nat. Commun. 12 2848
[10] Xu C, Zhao J, Wang E, Liu X, Shen X, Rong X, Zheng Q, Ren G, Zhang N, Liu X, Guo X, Yang C, Liu H, Zhong B and Hu Y S 2021 Adv. Energy Mater. 11 2100729
[11] Shen X, Han M, Li X, Zhang P, Yang C, Liu H, Hu Y and Zhao J 2022 ACS Appl. Mater. Interfaces 14 6841
[12] Guo G C, Wang C, Ming B M, Luo S W, Su H, Wang B Y, Zhang M, Yu H J and Wang R Z 2018 Chin. Phys. B 27 118801
[13] Delmas C, Fouassier C and Hagenmuller P 1980 Physica 99B 81
[14] Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202
[15] Ding Y, Ding F, Rong X, Lu Y and Hu Y S 2022 Chin. Phys. B 31 068201
[16] Liu Q, Hu Z, Li W, Zou C, Jin H, Wang S, Chou S and Dou S X 2021 Energy Environ. Sci. 14 158
[17] Ren H, Li Y, Ni Q, Bai Y, Zhao H and Wu C 2022 Adv. Mater. 34 2106171
[18] Xu H, Guo S and Zhou H 2019 J. Mater. Chem A 7 23662
[19] Assat G and Tarascon J M 2018 Nat. Energy 3 373
[20] Robertson A D and Bruce P G 2003 Chem. Mater. 15 1984
[21] Yu D Y W, Yanagida K, Kato Y and Nakamura H 2009 J. Electrochem. Soc. 156 A417
[22] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M and Bruce P G 2006 J. Am. Chem. Soc. 128 8694
[23] Seo D H, Lee J, Urban A, Malik R, Kang S and Ceder G 2016 Nat. Chem. 8 692
[24] Aydinol M K, Kohan A F and Ceder G 1997 Phys. Rev. B 56 1354
[25] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[26] Meng Y S, Ceder G, Grey C P, Yoon W S, Jiang M, Bréger J and Shao-Horn Y 2005 Chem. Mater. 17 2386
[27] Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684
[28] Sauban'ere M, McCalla E, Tarascon J M and Doublet M L 2016 Energy Environ. Sci. 9 984
[29] Yahia M B, Vergnet J, Sauban'ere M and Doublet M L 2019 Nat. Mater. 18 496
[30] Okubo M and Yamada A 2017 ACS Appl. Mater. Interfaces 9 36463
[31] Sudayama T, Uehara K, Mukai T, Asakura D, Shi X M, Tsuchimoto A, de Boisse B M, Shimada T, Watanabe E, Harada Y, Nakayama M, Okubo M and Yamada A 2020 Energy Environ. Sci. 13 1492
[32] Tsuchimoto A, Shi X, Kawai K, de Boisse B M, Kikkawa J, Asakura D, Okubo M and Yamada A 2021 Nat. Commun. 12 631
[33] Kitchaev D A, Vinckeviciute J and Van der Ven A 2021 J. Am. Chem. Soc. 143 1908
[34] Song J H, Yoon G, Kim B, Eum D, Park H, Kim D H and Kang K 2020 Adv. Energy Mater. 10 2001207
[35] Zhang K, Jiang Z, Ning F, Li B, Shang H, Song J, Zuo Y, Yang T, Feng G, Ai X and Xia D 2021 Adv. Energy Mater. 11 2100892
[36] Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L and Hu Y S 2020 Science 370 708
[37] Maitra U, House R A, Somerville J W, Tapia-ruiz N, Lozano J G, Guerrini N, Hao R, Luo K, Jin L, Pérez-Osorio M A, Massel F, Pickup D M, Ramos S, Lu X, McNally D E, Chadwick A V, Giustino F, Schmitt T, Duda L C, Roberts M R and Bruce P G 2018 Nat. Chem. 10 288
[38] Mu L, Xu S, Li Y, Hu Y S, Li H, Chen L and Huang X 2015 Adv. Mater. 27 6928
[39] Mu L, Qi X, Hu Y, Li H, Chen L and Huang X 2016 Energy Storage Sci. Technol. 5 324
[40] Li X, Bao J, Shadike Z, Wang Q, Yang X and Zhou Y 2021 Angew. Chem. Int. Ed. 60 22026
[41] Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X, Delmas C and Chen L 2019 Joule 3 503
[42] de la Llave E, Talaie E, Levi E, Nayak P K, Dixit M, Rao P T, Hartmann P, Chesneau F, Major D T, Greenstein M, Aurbach D and Nazar L F 2016 Chem. Mater. 28 9064
[43] Xiao B, Liu X, Chen X, Lee G, Song M, Yang X, Omenya F, Reed D M, Sprenkle V, Ren Y, Sun C, Yang W, Amine K, Li X, Xu G and Li X 2021 Adv. Mater. 33 2107141
[44] Ma X, Chen H and Ceder G 2011 J. Electrochem. Soc. 158 A1307
[45] Vassilaras P, Ma X, Li X and Ceder G 2013 J. Electrochem. Soc. 160 A207
[46] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11 512
[47] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636
[48] Tamaru M, Wang X, Okubo M and Yamada A 2013 Electrochem. Commun. 33 23
[49] de Boisse B M, Liu G, Ma J, Nishimura S I, Chung S C, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M and Yamada A 2016 Nat. Commun. 7 11397
[50] Perez A J, Batuk D, Sauban'ere M, Rousse G, Foix D, McCalla E, Berg E J, Dugas R, van den Bos K H W, Doublet M, Gonbeau D, Abakumov A M, Van Tendeloo G and Tarascon J 2016 Chem. Mater. 28 8278
[51] Rozier P, Sathiya M, Paulraj A, Foix D, Desaunay T, Taberna P, Simon P and Tarascon J 2015 Electrochem. Commun. 53 29
[52] Zhang X, Qiao Y, Guo S, Jiang K, Xu S, Xu H Wang P, He P and Zhou H 2019 Adv. Mater. 31 1807770
[53] Zhao C, Wang Q, Lu Y, Jiang L, Liu L, Yu X, Chen L, Li B and Hu Y S 2019 Energy Storage Mater. 20 395
[54] Rong X, Gao F, Lu Y, Yang K ang Hu Y 2018 Chin. Chem. Lett. 29 1791
[55] Zhang Y, Wu M, Ma J, Wei G, Ling Y, Zhang R and Huang Y 2020 ACS Cent. Sci. 6 232
[56] Lu Z and Dahn J R 2001 J. Electrochem. Soc. 148 A1225
[57] Du K, Zhu J, Hu G, Gao H, Li Y and Goodenough J B 2016 Energy Environ. Sci. 9 2575
[58] Adamczyk E and Pralong V 2017 Chem. Mater. 29 4645
[59] Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, Yu X, Page K, Hu Y S, Yang W, Li H, Yang X Q, Chen L and Huang X 2017 Joule 2 125
[60] de Boisse B M, Nishimura S, Watanabe E, Lander L, Tsuchimoto A, Kikkawa J, Kobayashi E, Asakura D, Okubo M and Yamada A 2018 Adv. Energy Mater. 8 1800409
[61] Dai K, Mao J, Zhuo Z, Feng Y, Mao W, Ai G, Pan F, Chuang Y, Liu G and Yang W 2020 Nano Energy 74 104831
[62] Zhang J, Wang W, Wang W, Wang S and Li B 2019 ACS Appl. Mater. Interfaces 11 22051
[63] House R A, Maitra U, Pérez-Osorio M A, Lozano J G, Jin L, Somerville J W, Duda L C, Nag A, Walters A, Zhou K J, Roberts M R and Bruce P G 2020 Nature 577 502
[64] Gao A, Zhang Q, Li X, Shang T, Tang Z, Lu X, Luo Y, Ding J, Kan W H, Chen H, Yin W, Wang X, Xiao D, Su D, Li H, Rong X, Yu X, Yu Q, Meng F, Nan C, Delmas C, Chen L, Hu Y S and Gu L 2022 Nat. Sustain. 5 214
[65] Huang Y, Zhu Y, Nie A, Fu H, Hu Z, Sun X, Haw S C, Chen J M, Chan T S, Yu S, Sun G, Jiang G, Han J, Luo W and Huang Y 2022 Adv. Mater. 34 2105404
[66] Wang Q C, Meng J K, Yue X Y, Qiu Q Q, Song Y, Wu X J, Fu Z W, Xia Y Y, Shadike Z, Wu J, Yang X Q and Zhou Y N 2019 J. Am. Chem. Soc. 141 840
[67] Li Y, Lu Y, Chen L and Hu Y S 2020 Chin. Phys. B 29 048201
[68] Li X Y, Weng S T and Gu L 2020 Chin. Phys. B 29 028801
[69] de Groot F M F, Grioni M and Fuggle J C 1989 Phys. Rev. B 40 5715
[70] Roychoudhury S, Qiao R, Zhuo Z, Li Q, Lyu Y, Kim J, Liu J, Lee E, Polzin B J, Guo J, Yan S, Hu Y, Li H, Prendergast D and Yang W 2021 Energy Environ. Mater. 4 246
[71] Boivin E, House R A, Pérez-Osorio M A, Marie J J, Maitra U, Rees G J and Bruce P G 2021 Joule 5 1267
[72] Vergnet J, Saubanére M, Doublet M L and Tarascon J M 2020 Joule 4 420
[73] Sathiya M, Leriche J B, Salager E, Gourier D, Tarascon J M and Vezin H 2015 Nat. Commun. 6 6276
[74] Jia M, Li H, Qiao Y, Wang L, Cao X, Cabana J and Zhou H 2020 ACS Appl. Mater. Interfaces 12 38249
[75] Shang T, Xiao D, Zhang Q, Wang X, Su D and Gu L 2021 Chin. Phys. B 30 078202
[76] Fell C R, Qian D, Carroll K J, Chi M, Jones J L and Meng Y S 2013 Chem. Mater. 25 1621
[77] Zhao E, Zhang Z G, Li X, He L, Yu X, Li H and Wang F 2020 Chin. Phys. B 29 54
[78] Wang X, Tan S, Yang X Q and Hu E 2020 Chin. Phys. B 29 028802
[79] Carmichael R S 1989 Practical handbook of physical properties of rocks and minerals (CRC Press)
[80] Eum D, Kim B, Song J H, Park H, Jang H Y, Kim S J, Cho S P, Lee M H, Heo J H, Park J, Ko Y, Park S K, Kim J, Oh K, Kim D H, Kang S J and Kang K 2022 Nat. Mater. 21 664
[81] Zhao C, Yao Z, Wang J, Lu Y, Bai X, Aspuru-Guzik A, Chen L and Hu Y S 2019 Chem. 5 2913
[82] Jiang L W, Lu Y X, Wang Y S, Liu L L, Qi X G, Zhao C L, Chen L Q and Hu Y S 2018 Chin. Phys. Lett. 35 048801
[83] Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H A and Zhou C 2016 Nano Energy 27 27
[84] Xie F, Lu Y, Chen L and Hu Y S 2021 Chin. Phys. Lett. 38 118401
[85] Hu Y S and Li Y 2021 ACS Energy Lett. 6 4115
[1] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[2] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[3] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[4] Energy storage performances regulated by BiMnO3 proportion in limited solid solution films
Fei Guo(郭飞), Zhifeng Shi(史智锋), Yaping Liu(刘亚平), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2020, 29(11): 116801.
[5] Hard carbons derived from pine nut shells as anode materials for Na-ion batteries
Hao Guo(郭浩), Kai Sun(孙凯), Yaxiang Lu(陆雅翔), Hongliang Wang(王洪亮), Xiaobai Ma(马小柏), Zhengyao Li(李正耀), Yong-Sheng Hu(胡勇胜), Dongfeng Chen(陈东风). Chin. Phys. B, 2019, 28(6): 068203.
[6] Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes
Zheng-Hu Zuo(左正笏), Qing-Feng Zhan(詹清峰), Bin Chen(陈斌), Hua-Li Yang(杨华礼), Yi-Wei Liu(刘宜伟), Lu-Ping Liu(刘鲁萍), Ya-Li Xie(谢亚丽), Run-Wei Li(李润伟). Chin. Phys. B, 2016, 25(8): 087702.
[7] A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support
Shen Yang-Wu (沈阳武), Ke De-Ping (柯德平), Sun Yuan-Zhang (孙元章), Daniel Kirschen, Wang Yi-Shen (王轶申), Hu Yuan-Chao (胡元朝). Chin. Phys. B, 2015, 24(7): 070201.
[8] New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries
Mu Lin-Qin (穆林沁), Hu Yong-Sheng (胡勇胜), Chen Li-Quan (陈立泉). Chin. Phys. B, 2015, 24(3): 038202.
[9] Novel copper redox-based cathode materials for room-temperature sodium-ion batteries
Xu Shu-Yin (徐淑银), Wu Xiao-Yan (吴晓燕), Li Yun-Ming (李云明), Hu Yong-Sheng (胡勇胜), Chen Li-Quan (陈立泉). Chin. Phys. B, 2014, 23(11): 118202.
[10] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
No Suggested Reading articles found!