INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent |
Fan Xing (樊星)a b, Zhao Su-Ling (赵谡玲)a b, Chen Yu (陈雨)c, Zhang Jie (张杰)c, Yang Qian-Qian (杨倩倩)a b, Gong Wei (龚伟)a b, Yuan Meng-Yao (苑梦尧)c, Xu Zheng (徐征)a b, Xu Xu-Rong (徐叙瑢)a b |
a Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China;
b Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China;
c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Crystallographic dynamics of blend films of regioregular poly(3-hexylthiophene) (P3HT) mixed with [6-6-]-phenyl-C61-butyric acid methyl ester (PC61BM) treated by thermal annealing or by adding solvent 1,8-diiodooctane (DIO) are characterized by 2D-grazing incidence x-ray diffraction (2D-GIXRD). The results show that the P3HT chains are primarily oriented with the thiophene ring edge-on to the substrate, with a small fraction of chains oriented plane-on. The interplanar spacing becomes narrow after being treated by DIO, and the coherence length of the P3HT crystallites increases after being treated by thermal annealing or DIO, which is accompanied by a change in the orientation angle of the P3HT lamellae. The increased ordering of P3HT packing induced by thermal annealing or adding DIO contributes to enhanced photovoltaic performance.
|
Received: 01 January 2015
Revised: 12 February 2015
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
71.20.Rv
|
(Polymers and organic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272022 and 11474018), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120009130005), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012JBZ001). |
Corresponding Authors:
Zhao Su-Ling
E-mail: slzhao@bjtu.edu.cn
|
Cite this article:
Fan Xing (樊星), Zhao Su-Ling (赵谡玲), Chen Yu (陈雨), Zhang Jie (张杰), Yang Qian-Qian (杨倩倩), Gong Wei (龚伟), Yuan Meng-Yao (苑梦尧), Xu Zheng (徐征), Xu Xu-Rong (徐叙瑢) Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent 2015 Chin. Phys. B 24 078401
|
[1] |
Peet J, Kim J, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
|
[2] |
Ma W, Yang C, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
|
[3] |
Troshin P A, Hoppe H, Renz J, Egginger M, Mayorova J Y, Goryachev A E, Peregudov A S, Lyubovskaya R N, Gobsch G and Sariciftci N S 2009 Adv. Funct. Mater. 19 779
|
[4] |
Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
|
[5] |
Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
|
[6] |
Chu C W, Yang H, Hou W J, Huang J, Li G and Yang Y 2008 Appl. Phys. Lett. 92 103306
|
[7] |
Yao Y, Hou J, Xu Z, Li G and Yang Y 2008 Adv. Funct. Mater. 18 1783
|
[8] |
Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Zhao Z M, Chen H T, Yang Y F, Gao S and Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese)
|
[9] |
Li G L, He L J, Li J, Li X S, Liang S, Gao M M and Yuan H W 2013 Acta Phys. Sin. 62 197202 (in Chinese)
|
[10] |
Cai W, Gong X and Cao Y 2010 Solar Energy Mater. Solar Cell. 94 114
|
[11] |
Salleo A, Kline R J, DeLongchamp D M and Chabinyc M L 2010 Adv. Mater. 22 3812
|
[12] |
Kline R J, McGehee M D and Toney M F 2006 Nat. Mater. 5 222
|
[13] |
Salleo A 2007 Mater. Today 10 38
|
[14] |
Thompson B C and Frechet J M 2008 Angew. Chem. Int. Ed. Engl. 47 58
|
[15] |
Deibel C and Dyakonov V 2010 Rep. Prog. Phys. 73 096401
|
[16] |
Treat N D, Brady M A, Smith G, Toney M F, Kramer E J, Hawker C J and Chabinyc M L 2011 Adv. Energy Mater. 1 82
|
[17] |
Brinkmann M and Rannou P 2009 Macromolecules 42 1125
|
[18] |
Joshi S, Pingel P, Grigorian S, Panzner T, Pietsch U, Neher D, Forster M and Scherf U 2009 Macromolecules 42 4651
|
[19] |
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
|
[20] |
Bertho S, Janssen G, Cleij T J, Conings B, Moons W, Gadisa A, D'Haen J, Goovaerts E, Lutsen L, Manca J and Vanderzande D 2008 Solar Energy Mater. Solar Cell. 92 753
|
[21] |
Verploegen E, Mondal R, Bettinger C J, Sok S, Toney M F and Bao Z 2010 Adv. Funct. Mater. 20 3519
|
[22] |
Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C and Brabec C J 2005 Adv. Funct. Mater. 15 1193
|
[23] |
Miller S, Fanchini G, Lin Y Y, Li C, Chen C W, Su W F and Chhowalla M 2008 J. Mater. Chem. 18 306
|
[24] |
De Sio A, Madena T, Huber R, Parisi J, Neyshtadt S, Deschler F, Da Como E,Esposito S and Von Hauff E 2011 Solar Energy Mater. Solar Cell. 95 3536
|
[25] |
Yang X, Loos J, Veenstra S C, Verhees W J, Wienk M M, Kroon J M, Michels M A and Janssen R A 2005 Nano Lett. 5 579
|
[26] |
Pivrikas A, Neugebauer H and Sariciftci N S 2011 Solar Energy 85 1226
|
[27] |
Salim T, Wong L H, Bräuer B, Kukreja R, Foo Y L, Bao Z and Lam Y M 2011 J. Mater. Chem. 21 242
|
[28] |
Yang S P, Wang T N, Shi J B, Zhang Y, Li X W and Fu G S 2013 Chin. Phys. Lett. 30 108401
|
[29] |
Lilliu S, Agostinelli T, Pires E, Hampton M, Nelson J and Macdonald J E 2011 Macromolecules 44 2725
|
[30] |
Kayunkid N, Uttiya S and Brinkmann M 2010 Macromolecules 43 4961
|
[31] |
Sanyal M, Schmidt-Hansberg B, Klein M F G, Munuera C, Vorobiev A, Colsmann A, Scharfer P, Lemmer U, Schabel W and Dosch H 2011 Macromolecules 44 3795
|
[32] |
Aryal M, Trivedi K and Hu W 2009 ACS Nano 3 3085
|
[33] |
Su G M, Pho T V, Eisenmenger N D, Wang C, Wudl F, Kramer E J and Chabinyc M L 2014 J. Mater. Chem. A 2 1781
|
[34] |
Pitliya P, Sun Y, Garza J, Liu C, Gong X, Karim A and Raghavan D 2014 Polymer 55 1769
|
[35] |
Wang J, Ueda M and Higashihara T 2014 J. Poly. Sci. A: Poly. Chem. 52 1139
|
[36] |
Buschbaum P 2014 Adv. Mater. 26 7692
|
[37] |
Sanyal M, SchmidtHansberg B, Klein M F G, Colsmann A, Munuera C, Vorobiev A, Lemmer U, Schabel W, Dosch H and Barrena E 2011 Adv. Energy. Mater. 1 363
|
[38] |
Jo J, Kim S S, Na S I, Yu B K and Kim D Y 2009 Adv. Funct. Mater. 19 866
|
[39] |
Rogers J T, Schmidt K, Toney M F, Bazan G C and Kramer E J 2012 J. Am. Chem. Soc. 134 2884
|
[40] |
Rogers J T, Schmidt K, Toney M F, Kramer E J and Bazan G C 2011 Adv. Mater. 23 2284
|
[41] |
Rivnay J, Mannsfeld S C B, Miller C E, Salleo A and Toney M F 2012 Chem. Rev. 112 5488
|
[42] |
Chabinyc M L 2008 Poly. Rev. 48 463
|
[43] |
Brinkmann M 2011 J. Poly. Sci. B: Poly. Phys. 49 1218
|
[44] |
Wu T M, Blackwell J and Chvalun S N 1995 Macromolecules 28 7349
|
[45] |
Chen H Y, Yang H, Yang G, Sista S, Zadoyan R, Li G and Yang Y 2009 J. Phys. Chem. C 113 7946
|
[46] |
Vandewal K, Gadisa A, Oosterbaan W D, Bertho S, Banishoeib F, Van Severen I, Lutsen L, Cleij T J, Vanderzande D and Manca J V 2008 Adv. Funct. Mater. 18 2064
|
[47] |
Jo J, Kim S S, Na S I, Yu B K and Kim D Y 2009 Adv. Funct. Mater. 19 866
|
[48] |
Brown P, Thomas D, Köher A, Wilson J, Kim J S, Ramsdale C, Sirringhaus H and Friend R 2003 Phys. Rev. B 67 064203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|