Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044205    DOI: 10.1088/1674-1056/24/4/044205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimizing quantum correlation dynamics by weak measurement in dissipative environment

Du Shao-Jiang (杜少将)a b, Xia Yun-Jie (夏云杰)a, Duan De-Yang (段德洋)a, Zhang Lu (张路)a, Gao Qiang (高强)a
a Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
b Department of Physics and Information Engineering, Jining University, Qufu 273155, China
Abstract  We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process.
Keywords:  quantum entanglement      quantum correlation      entanglement sudden death      weak measurement  
Received:  22 September 2014      Revised:  15 October 2014      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).
Corresponding Authors:  Xia Yun-Jie     E-mail:  yjxia_sd@126.com

Cite this article: 

Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强) Optimizing quantum correlation dynamics by weak measurement in dissipative environment 2015 Chin. Phys. B 24 044205

[1] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[2] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[3] Fanchini F F, Werlang T and Brasil C A 2010 Phys. Rev. A 81 052107
[4] Yu T and Eberly J H. 2004 Phys. Rev. Lett. 93 140404
[5] Petruccione F and Breuer H P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp. 461-471
[6] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[7] Bellomo B, Compagno G, Lo Franco R, Ridolfo A and savasta S 2011 Int. J. Quantum Inf. 9 1665
[8] Bellomo B, Franco R L and Compagno G 2008 Phys. Rev. A 77 032342
[9] Bellomo B, Messina R, Felbacq D andAntezza M 2013 Phys. Rev. A 87 012101
[10] Yang L P, Cai C Y, Xu D Z, Zhang W M and Sun C P 2013 Phys. Rev. A 87 012110
[11] Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[12] Lei C U and Zhang W M 2011 Phys. Rev. A 84 052116
[13] Longhi S 2006 Phys. Rev. A 74 063826
[14] Zhang Y J, Han W, Shan C J and Xia Y J 2012 J. Opt. Soc. Am. B 29 2060
[15] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[16] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[17] D'Arrigo A, Franco R L and Benenti G 2012 arXiv: 1207.3294
[18] Franco R L, Bellomo B and Maniscalco S 2013 Int. J. Mod. Phys. B 27 1245053
[19] Liu X and Wu W 2014 Chin. Phys. B 23 070303
[20] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[21] Guo Y N, Fang M F and Liu X 2014 Chin. Phys. B 23 034204
[22] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[23] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
[24] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[25] Hofmann H F. 2012 Phys. Rev. Lett. 109 020408
[26] Cheong Y W and Lee S W 2012 Phys. Rev. Lett. 109 150402
[27] Sun Q Q, Al-Amri M, Luiz D and Zubairy M S 2010 Phys. Rev. A 82 052323
[28] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 012325
[29] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322.
[30] Du S J, Xia Y J, Man Z X, Zhang Y J and Duan D Y. 2013 Acta Opt. Sin. 33 1127001
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[6] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[7] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[8] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[13] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[14] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!