Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044204    DOI: 10.1088/1674-1056/24/4/044204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase-controlled coherent population trapping in superconducting quantum circuits

Cheng Guang-Ling (程广玲)a, Wang Yi-Ping (王一平)a, Chen Ai-Xi (陈爱喜)a b
a Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China;
b Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada
Abstract  We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.
Keywords:  coherent population trapping      phase control      superconducting quantum circuits  
Received:  16 September 2014      Revised:  16 October 2014      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11365009), the Foundation of Young Scientist of Jiangxi Province, China (Grant No. 20142BCB23011), and the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ13348).
Corresponding Authors:  Cheng Guang-Ling, Chen Ai-Xi     E-mail:  glingcheng@ecjtu.edu.cn;aixichen@ecjtu.edu.cn

Cite this article: 

Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜) Phase-controlled coherent population trapping in superconducting quantum circuits 2015 Chin. Phys. B 24 044204

[1] Arimondo E and Orriols G 1976 Nuo. Cimen. Lett. 17 333
[2] Arimondo E 1996 Progress in Optics 35 257
[3] Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
[4] Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 6409
[5] Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
[6] Esnault F X, Blanshan E, Ivanov E N, Scholten R E, Kitching J and Donley E A 2013 Phys. Rev. A 88 042120
[7] Dantan A, Cviklinski J, Giacobino E and Pinard M 2006 Phys. Rev. Lett. 97 023605
[8] Wang Z 2014 Chin. Phys. B 23 030601
[9] Ling H Y, Li Y Q and Xiao M 1996 Phys. Rev. A 53 1014
[10] Hack J, Liu L, Olshanii M and Metcalf H 2000 Phys. Rev. A 62 013405
[11] Yang G J, Xie M, Zhang Z and Wang K G 2008 Phys. Rev. A 77 063825
[12] Dynes J F, Frogley M D, Rodger J and Phillips C C 2005 Phys. Rev. B 72 085323
[13] Groth C W, Michaelis B and Beenakker C W J 2006 Phys. Rev. B 74 125315
[14] Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D and Prawer S 2006 Phys. Rev. Lett. 97 247401
[15] Harris S E 1997 Phys. Today 50 36
[16] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[17] Deng L and Payne M G 2003 Phys. Rev. Lett. 91 243902
[18] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
[19] Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 053809
[20] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[21] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[22] Korsunsky E A, Leinfellner N, Huss A, Baluschev S and Windholz L 1999 Phys. Rev. A 59 2302
[23] Hu X M, Zou J H, Li X, Du D and Cheng G L 2005 J. Phys. B: At. Mol. Opt. Phys. 38 683
[24] Wu Y and Yang X X 2007 Phys. Rev. A 76 013832
[25] Kou J, Wan R G, Kang Z H, Jiang L, Wang L, Jiang Y and Gao J Y 2011 Phys. Rev. A 84 063807
[26] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[27] Ghafoor F, Qamar S and Zubairy M S 2002 Phys. Rev. A 65 043819
[28] Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2004 Phys. Rev. A 70 023813
[29] Hu X M, Cheng G L, Zou J H, Li X and Du D 2005 Phys. Rev. A 72 023803
[30] Raymond Ooi C H 2007 Phys. Rev. A 76 013809
[31] Zeng Z Q, Hou B P, Liu F T and Shao J X 2014 Chin. Phys. Lett. 31 034201
[32] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[33] Liu Y X, You J Q, Wei L F, Sun C P and Nori F 2005 Phys. Rev. Lett. 95 087001
[34] You J Q and Nori F 2011 Nature 474 589
[35] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
[36] Kelly W R, Dutton Z, Ohki T A, Schlafer J, Mookerji B, Kline J S and Pappas D P 2010 Phys. Rev. Lett. 104 163601
[37] Abdumalikov Jr A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[38] Joo J, Bourassa J, Blais A and Sanders B C 2010 Phys. Rev. Lett. 105 073601
[39] Baur M, Filipp S, Bianchetti R, Fink J, Göpl M, Steffen L, Leek P, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 243602
[40] Leung P M and Sanders B C 2012 Phys. Rev. Lett. 109 253603
[41] Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P and Wilson C M 2013 Phys. Rev. Lett. 111 053601
[42] Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S and Nori F 2013 preprint arXiv: 1308 6409
[43] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[44] Manucharyan V E, Masluk N A, Kamal A, Koch J, Glazman L I and Devoret M H 2012 Phys. Rev. B 85 024521
[45] Zhu G Y, Ferguson D G, Manucharyan V E and Koch J 2013 Phys. Rev. B 87 024510
[1] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[2] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[3] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[4] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[5] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[6] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[7] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[8] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[9] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[10] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[11] Transient responses of transparency in a far-off resonant atomic system
Hu Zheng-Feng (胡正峰), Du Chun-Guang (杜春光), Deng Jian-Liao (邓见辽), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2014, 23(5): 054204.
[12] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[13] High contrast atomic magnetometer based on coherent population trapping
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(2): 027601.
[14] Electromagnetically induced transparency in a three-mode optomechanical system
Yan Xiao-Bo (严晓波), Gu Kai-Hui (谷开慧), Fu Chang-Bao (付长宝), Cui Cui-Li (崔淬砺), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2014, 23(11): 114201.
[15] Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas
Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2013, 22(9): 099501.
No Suggested Reading articles found!