ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase-controlled coherent population trapping in superconducting quantum circuits |
Cheng Guang-Ling (程广玲)a, Wang Yi-Ping (王一平)a, Chen Ai-Xi (陈爱喜)a b |
a Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China; b Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada |
|
|
Abstract We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.
|
Received: 16 September 2014
Revised: 16 October 2014
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
85.25.Hv
|
(Superconducting logic elements and memory devices; microelectronic circuits)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11365009), the Foundation of Young Scientist of Jiangxi Province, China (Grant No. 20142BCB23011), and the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ13348). |
Corresponding Authors:
Cheng Guang-Ling, Chen Ai-Xi
E-mail: glingcheng@ecjtu.edu.cn;aixichen@ecjtu.edu.cn
|
Cite this article:
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜) Phase-controlled coherent population trapping in superconducting quantum circuits 2015 Chin. Phys. B 24 044204
|
[1] |
Arimondo E and Orriols G 1976 Nuo. Cimen. Lett. 17 333
|
[2] |
Arimondo E 1996 Progress in Optics 35 257
|
[3] |
Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826
|
[4] |
Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 6409
|
[5] |
Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
|
[6] |
Esnault F X, Blanshan E, Ivanov E N, Scholten R E, Kitching J and Donley E A 2013 Phys. Rev. A 88 042120
|
[7] |
Dantan A, Cviklinski J, Giacobino E and Pinard M 2006 Phys. Rev. Lett. 97 023605
|
[8] |
Wang Z 2014 Chin. Phys. B 23 030601
|
[9] |
Ling H Y, Li Y Q and Xiao M 1996 Phys. Rev. A 53 1014
|
[10] |
Hack J, Liu L, Olshanii M and Metcalf H 2000 Phys. Rev. A 62 013405
|
[11] |
Yang G J, Xie M, Zhang Z and Wang K G 2008 Phys. Rev. A 77 063825
|
[12] |
Dynes J F, Frogley M D, Rodger J and Phillips C C 2005 Phys. Rev. B 72 085323
|
[13] |
Groth C W, Michaelis B and Beenakker C W J 2006 Phys. Rev. B 74 125315
|
[14] |
Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D and Prawer S 2006 Phys. Rev. Lett. 97 247401
|
[15] |
Harris S E 1997 Phys. Today 50 36
|
[16] |
Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
|
[17] |
Deng L and Payne M G 2003 Phys. Rev. Lett. 91 243902
|
[18] |
Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
|
[19] |
Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 053809
|
[20] |
Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
|
[21] |
Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
|
[22] |
Korsunsky E A, Leinfellner N, Huss A, Baluschev S and Windholz L 1999 Phys. Rev. A 59 2302
|
[23] |
Hu X M, Zou J H, Li X, Du D and Cheng G L 2005 J. Phys. B: At. Mol. Opt. Phys. 38 683
|
[24] |
Wu Y and Yang X X 2007 Phys. Rev. A 76 013832
|
[25] |
Kou J, Wan R G, Kang Z H, Jiang L, Wang L, Jiang Y and Gao J Y 2011 Phys. Rev. A 84 063807
|
[26] |
Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
|
[27] |
Ghafoor F, Qamar S and Zubairy M S 2002 Phys. Rev. A 65 043819
|
[28] |
Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2004 Phys. Rev. A 70 023813
|
[29] |
Hu X M, Cheng G L, Zou J H, Li X and Du D 2005 Phys. Rev. A 72 023803
|
[30] |
Raymond Ooi C H 2007 Phys. Rev. A 76 013809
|
[31] |
Zeng Z Q, Hou B P, Liu F T and Shao J X 2014 Chin. Phys. Lett. 31 034201
|
[32] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[33] |
Liu Y X, You J Q, Wei L F, Sun C P and Nori F 2005 Phys. Rev. Lett. 95 087001
|
[34] |
You J Q and Nori F 2011 Nature 474 589
|
[35] |
Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
|
[36] |
Kelly W R, Dutton Z, Ohki T A, Schlafer J, Mookerji B, Kline J S and Pappas D P 2010 Phys. Rev. Lett. 104 163601
|
[37] |
Abdumalikov Jr A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
|
[38] |
Joo J, Bourassa J, Blais A and Sanders B C 2010 Phys. Rev. Lett. 105 073601
|
[39] |
Baur M, Filipp S, Bianchetti R, Fink J, Göpl M, Steffen L, Leek P, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 243602
|
[40] |
Leung P M and Sanders B C 2012 Phys. Rev. Lett. 109 253603
|
[41] |
Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P and Wilson C M 2013 Phys. Rev. Lett. 111 053601
|
[42] |
Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S and Nori F 2013 preprint arXiv: 1308 6409
|
[43] |
Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
|
[44] |
Manucharyan V E, Masluk N A, Kamal A, Koch J, Glazman L I and Devoret M H 2012 Phys. Rev. B 85 024521
|
[45] |
Zhu G Y, Ferguson D G, Manucharyan V E and Koch J 2013 Phys. Rev. B 87 024510
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|