Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054102    DOI: 10.1088/1674-1056/23/5/054102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Inverse design-based metamaterial transparent device and its multilayer realization

Li Ting-Hua (李廷华), Huang Ming (黄铭), Yang Jing-Jing (杨晶晶), Yuan Gang (袁刚), Cai Guang-Hui (蔡光卉)
Wireless Innovation Lab, School of Information Science and Engineering, Yunnan University, Kunming 650091, China
Abstract  We propose an inverse method to determine the material parameters of a transparent device without any knowledge of the corresponding transformation function. The required parameters are independently obtained and expressed as functions of the introduced generator. Moreover, to remove the inhomogeneity and anisotropy of material parameters, a layered transparent device composed of only homogeneous and isotropic materials is presented based on the effective medium theory. The feasibility of using the layered device in antenna protection is also investigated. Full-wave simulation is carried out for verification. This work paves a new way toward designing metamaterial devices without specifying the underlying coordinate transformation, and has great guiding significance for the practical fabrication of transparent devices.
Keywords:  metamaterial      transparent device      inverse design      multilayer realization  
Received:  26 August 2013      Revised:  10 October 2013      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161007 and 61261002), the Natural Science Foundation of Yunnan Province, China (Grant No. 2011FB018), the Postdoctoral Science Foundation of China (Grant No. 2013M531989), the Key Program of Natural Science of Yunnan Province, China (Grant No. 2013FA006), and the Fostering Foundation for the Excellent Ph.D. Dissertation of Yunnan University, China.
Corresponding Authors:  Huang Ming     E-mail:  huangming@ynu.edu.cn
About author:  41.20.Jb; 78.20.Bh; 78.67.Pt

Cite this article: 

Li Ting-Hua (李廷华), Huang Ming (黄铭), Yang Jing-Jing (杨晶晶), Yuan Gang (袁刚), Cai Guang-Hui (蔡光卉) Inverse design-based metamaterial transparent device and its multilayer realization 2014 Chin. Phys. B 23 054102

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Jiang W X, Chin J Y and Cui T J 2009 Mater. Today 12 26
[4] Chen H Y, Chan C T and Sheng P 2010 Nat. Mater. 9 387
[5] Kundtz N B, Smith D R and Pendry J B 2011 Proc. IEEE 99 1622
[6] Liu Y M and Zhang X 2012 Nanoscale 4 5277
[7] Cai W S, Chettiar U K, Kildishev A V, Shalaev V M and Milton G W 2007 Appl. Phys. Lett. 91 111105
[8] Huang Y, Feng Y and Jiang T 2007 Opt. Express 15 11133
[9] Li C and Li F 2008 Opt. Express 16 13414
[10] Novitsky A, Qiu C W and Zouhdi S 2009 New J. Phys. 11 113001
[11] Yang C F, Yang J J, Huang M, Xiao Z and Peng J H 2011 Opt. Express 19 1147
[12] Wang S Y and Liu S B 2012 Chin. Phys. B 21 044102
[13] Guo P F, Li D, Dai Q and Fu Y Q 2013 Chin. Phys. B 22 054101
[14] Wang Z, Luo X Y, Liu J J and Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese)
[15] Wang W, Lin L, Yang X F, Cui J H, Du C L and Luo X G 2008 Opt. Express 16 8094
[16] Yang J J, Huang M, Yang C F, Xiao Z and Peng J H 2009 Opt. Express 17 19656
[17] Guo Y N, Liu S B, Zhao X, Wang S Y and Chen C 2012 Chin. Phys. B 21 064101
[18] Chen H Y and Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001
[19] Gao D B and Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese)
[20] Seungil K 2012 Chin. Phys. Lett. 29 124301
[21] Chang Z, Hu J, Hu G K, Tao R and Wang Y 2011 Appl. Phys. Lett. 98 121904
[22] Zhu W R, Rukhlenko I D and Premaratne M 2012 J. Opt. Soc. Am. B 29 2659
[23] Yu Z Z, Feng Y J, Wang Z B, Zhao M J and Jiang T 2013 Chin. Phys. B 22 034102
[24] Silveirinha M G and Engheta N 2012 Phys. Rev. B 86 161104
[25] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[26] Yu G X, Cui T J and Jiang W X 2009 J. Infrared Milli. Terahz Waves 30 633
[27] Mei Z L, Niu T M, Bai J and Cui T J 2010 J. Appl. Phys. 107 124908
[28] Li T H, Huang M, Yang J J, Yu J and Lan Y Z 2011 J. Phys. D: Appl. Phys. 44 325102
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[6] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[12] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[13] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
No Suggested Reading articles found!