Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047503    DOI: 10.1088/1674-1056/23/4/047503
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Optimizing and fabricating magnetocaloric materials

Liu Jian (刘剑)
Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The microstructural modification of existing materials for magnetic cooling applications, and mass fabrication of the modified materials are reviewed, emphasizing the maximization of magnetic entropy change and minimization of hysteresis losses, as well as the engineering problems in the actual application of promising materials. In the first part, physical rules are put forward to explore high performance magnetic refrigerants, including the enhancement of adiabatic temperature change in finite field, multi-caloric effects, and multi-layered structure. Special attention is given to non-magnetic properties. Following this, an overview of mass fabrication of magnetic refrigerants having large entropy change, small hysteresis, good mechanical properties, and high thermal conductivity is presented.
Keywords:  magnetocaloric effect      hysteresis      microstructure  
Received:  21 January 2014      Revised:  20 March 2014      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Corresponding Authors:  Liu Jian     E-mail:  liujian@nimte.ac.cn
About author:  75.30.Sg

Cite this article: 

Liu Jian (刘剑) Optimizing and fabricating magnetocaloric materials 2014 Chin. Phys. B 23 047503

[1] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[6] Tegus O, Bruck E, Buschow K H J and de Boer F R 2004 Nature 415 250
[7] Trung N T, Ou Z Q, Gortenmulder T J, et al. 2009 Appl. Phys. Lett. 94 102513
[8] Dung N H, Ou Z Q, Caron L, et al. 2011 Adv. Energy Mater. 1 1215
[9] Krenke T, Duman E, Acet M,Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[10] Liu J, Gottschall T, Skokov K, Moore J and Gutfleisch O 2012 Nat. Mater. 11 620
[11] Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S and Fukamichi K 2006 Int. J. Refrig. 29 1302
[12] Sari O and Balli M 2014 Int. J. Refrig. 37 8
[13] Tusek J, Kitanovski A, Tomc U, Favero C and Poredos A 2013 Int. J. Refrig. 37 117
[14] Moos L, Nielsen K K, Engelbrecht K and Bahl C R H 2014 Int. J. Refrig. 37 303
[15] Roy S B 2013 J. Phys.: Condens. Matter 25 183201
[16] Smith A, Bahl C R H, Bjok R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288
[17] Franco V, Blazquez J S, Ingale B and Conde A 2012 Ann. Rev. Mater. Res. 42 305
[18] Gutfleisch O and Franco V 2012 Scripta Mater. 67 521
[19] Pecharsky V K and Gschneidner Jr K A 2001 Adv. Mater. 13 683
[20] Sandeman K G 2012 Scripta Mater. 67 566
[21] Liu J, Scheerbaum N, Lyubina J and Gutfleisch O 2008 Appl. Phys. Lett. 93 102512
[22] Cui J, Chu Y S, Famodu O O, et al. 2006 Nat. Mater. 5 286
[23] Zarnetta R, Takahashi R and YoungML, et al. 2010 Adv. Funct. Mater. 20 1917
[24] Srivastava V, Song Y T, Bhatti K and James R D 2011 Adv. Energy Mater. 1 97
[25] Song Y T, Chen X, Dabade V, Shield T W and James R D 2013 Nature 502 85
[26] Fähler S, Röbler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, M¨uller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10
[27] Manosa L, Moya X, Planes A, Gutfleisch O, Lyubina J, Barrio M, Tamarit J L, Aksoy S, Krenke T and Acet M 2008 Appl. Phys. Lett. 92 12515
[28] Smaili A and Chahine R 1997 J. Appl. Phys. 81 824
[29] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A and Yayama H 1987 J. Appl. Phys. 62 3873
[30] Paticopoulos S C, Caballero-Flores R, Franco V, Blazquez J S, Conde A, Knipling K E and Willard M A 2012 Solid State Comm. 152 1590
[31] Engelbrecht K, Nielsen K K and Bahl C R H 2011 Int. J. Refrig. 34 1132
[32] Tishin AM1999 Handbook of Magnetic Materials (Amsterdam: North Holland)
[33] Ranke P J, Pecharsky V K and Gschneidner Jr K A 1998 Phys. Rev. B 58 12110
[34] Wada H 1999 Cryogenics 39 915
[35] Gschneidner K A Jr 2000 Mater. Sci. Eng. A 287 30
[36] Pecharsky V K 1998 Adv. Cryog. Eng. 43 1729
[37] Liu J, Moore J D, Skokov K P, Krautz M, Löwe K, Barcza A, Katter M and Gutfleisch O 2012 Scripta Mater. 67 584
[38] Lyubina J, Gutfleisch O, Kuz'min M D and Richter M 2008 J. Magn. Magn. Mater. 320 2252
[39] Krautz M, Moore J D, Skokov K, Liu J, Teixeira C S, Schafer R, Schultz L and Gutfleisch O 2012 J. Appl. Phys. 112 083918
[40] Barcza A, Katter M, Zellmann M, Russek V, Jacobs S and Zimm C 2011 IEEE Trans. Mag. 47 3391
[41] Nielsen K K and Bahl C R H 2009 J. Appl. Phys. 105 013916
[42] Nielsen K K and Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001
[43] Hu F X, Qian X L, Wang G J, Sun J R, Shen B G, Cheng Z H and Gao J 2005 Chin. Phys. 14 2329
[44] Lyubina J, Schaefer R, Martin N, Schultz L and Gutfleisch O 2010 Adv. Mater. 22 3735
[45] Chmielus M, Zhang X X, Witherspoon C, Dunand D C and M¨ullner P 2009 Nat. Mater. 8 863
[46] Zhang Z Y, Long Y, Wen D, Ye R C and Wan F R 2004 J. Rare Earths 22 99
[47] Balli M, Sari O, Zamni L, Robert A, Forchelet J and Fruchart D 2011 Solid State Phenom. 170 248
[48] Zhang M, Ye R C, Long Y and Chang Y Q 2011 J. Rare Earths 29 138
[49] Liu J, Krautz M, Skokov K,Woodcock T G and Gutfleisch O 2011 Acta Mater. 59 3602
[50] Yan A, Muller K H and Gutfleisch O 2005 J. Appl. Phys. 97 036102
[51] Hirosawa S, Tomizawa H and Bekki K 2006 IEEE Trans. Magn. 42 3608
[52] Zhang M X, Zhang Y, Hu K, Yan A and Liu J (unpublished)
[53] Liu J, Zhang P N, Dai F P and Yan A 2013 Scripta Mater. 69 485
[54] Dong J D, Yan A and Liu 2014 J. Magn. Magn. Mater. 357 73
[55] Katter M, Zellmann V, Reppel GWand Uesuener K 2008 IEEE Trans. Mag. 44 3044
[56] Trevizoli P V, Alves C S, Mendes M A B, Magnus A and Gama S 2008 J. Magn. Magn. Mater. 320 1582
[57] Yuzuak E, Durak G, Dincer I and Elerman Y 2012 J. Alloys Compd. 541 256
[58] DagulaW, Tegus O, Fuquan B and Zhang L 2005 IEEE Trans. Mag. 41 2778
[59] Dung N H, Zhang L, Ou Z Q and Br¨uck E 2012 Scripta Mater. 67 975
[60] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A915
[61] Phejar M, Paul-Boncour V and Bessais L 2010 Intermetallics 18 2301
[62] Löwe L, Liu J, Skokov K, Moore J, Sepehri-Amin H, Hono K, Katter M and Gutfleisch O 2012 Acta Mater. 60 4268
[63] Katter M, Zellmann V, Reppel G W and Uestuener K 2009 in: Egolf P W, Br¨uck E, Sandenman K G (ed.), Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, IIR, Des Moines, Iowa, 2009, p. 83
[64] Lyubina J, Hannemann U, Cohen L F and Ryan M P 2012 Adv. Energy Mater. 2 1323
[65] Tian N, Zhang N N, You C Y, Gao B and He J 2013 J. Appl. Phys. 113 103909
[66] Turcaud J A, Morrison K, Berenov A, Alford N, Sandeman K and Cohen L F 2013 Scripta Mater. 68 510
[67] Liu J, Scheerbaum N, Kauffmann-Weiss S and Gutfleisch 2012 Adv. Eng. Mater. 14 653
[68] Liu J, Scheerbaum N,Weiss S and Gutfleisch 2009 Appl. Phys. Lett. 95 152503
[69] Skokov K P, Karpenkov D Y, Kuzmin, Radulov I A, Gottschall T, Kaesewurm B, Fries M and Gutfleisch O 2014 J. Appl. Phys. (in press)
[70] Vasile C and Muller C 2006 Int. J. Refrig. 29 1318
[71] Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A, Skokov K and Grufleisch 2013 J. Appl. Phys. 114 043907
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[9] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[10] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[11] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[12] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[13] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[14] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[15] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
No Suggested Reading articles found!