Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050501    DOI: 10.1088/1674-1056/ac439d
GENERAL Prev   Next  

Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise

Yi-Wei Li(李毅伟)1, Peng-Fei Xu(许鹏飞)1,†, and Yong-Ge Yang(杨勇歌)2
1 Department of Mathematics, Shanxi Agricultural University, Jinzhong 030801, China;
2 School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract  The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova (FK) model under Gaussian colored noise is investigated by using the molecular dynamic simulation method. The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method. Via the stochastic Runge-Kutta algorithm, the relationship between different parameter values of the Gaussian colored noise (the noise intensity and the correlation time) and the nano-friction phenomena such as hysteresis, the maximum static friction force is separately studied here. Similar results are obtained from the two geometrically opposed ideal cases: incommensurate and commensurate interfaces. It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force, the introduction of noise can accelerate the motion of the system, making the atoms escape from the substrate potential well more easily. Interestingly, suitable correlation time and noise intensity give rise to super-lubricity. It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the incommensurate interface.
Keywords:  Frenkel-Kontorova model      Gaussian colored noise      hysteresis      super-lubricity  
Received:  04 September 2021      Revised:  04 December 2021      Accepted manuscript online: 
PACS:  05.10.Gg (Stochastic analysis methods)  
  68.35.Af (Atomic scale friction)  
  81.40.Pq (Friction, lubrication, and wear)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11902081),the Science and Technology Innovation Foundation of Higher Education Institutions of Shanxi Province,China (Grant No.2020L0172),the Natural Science Foundation for Young Scientists of Shanxi Agricultural University,China (Grant No.2020QC04),and the Research Fund of Shanxi Agriculture University,China (Grant No.2021BQ12).
Corresponding Authors:  Peng-Fei Xu,E-mail:xpf019@163.com     E-mail:  xpf019@163.com
About author:  2021-12-16

Cite this article: 

Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌) Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise 2022 Chin. Phys. B 31 050501

[1] Manini M, Vanossi A, Santoro G E and Tosatti E 2007 Phys. Rev. E 76 046603
[2] Vanossi A, Santoro G and Bortolani V 2004 J. Phys.: Condens. Matter 16 2895
[3] Vanossi A, Bishop A R and Bortolani V 2004 Nanotechnology 15 790
[4] Braun O M and Kivshar Y S 2004 The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Berlin: Springer-Verlag)
[5] Xu A G, Wang G R, Chen S G and Yang Z R 1999 Prog. Phys. 19 109 (in Chinese)
[6] Qin W X 2017 Sci. Sin. Math. 47 1853 (in Chinese)
[7] Vanossi A, Röder J, Bishop A R and Bortolani V 2003 Phys. Rev. E 67 016605
[8] Braun O M, Zhang H, Hu B and Tekić J 2003 Phys. Rev. E 67 066602
[9] Braun O M, Bishop A and Röder J 1997 Phys. Rev. Lett. 79 3692
[10] Lei Y M, Li Y W and Zhao Y P 2014 Acta Phys. Sin. 63 220502 (in Chinese)
[11] Wang C L, Duan W S, Chen J M and Shi Y R 2011 Chin. Phys. B 20 014601
[12] Yang Y, Cang L W, Hong J, Jian M C and Wen S D 2012 Phys. Scr. 86 015003
[13] Lin M M, Duan W S and Chen J M 2010 Chin. Phys. B 19 026201
[14] You M L and Yan Y H 2021 Chin. Phys. B 30 050503
[15] Tekić J and Hu B 2008 Phys. Rev. B 78 104305
[16] Tekić J, He D and Hu B 2009 Phys. Rev. E 79 036604
[17] Tekić J and Hu B 2010 Phys. Rev. E 81 036604
[18] Hu B and Tekić J 2007 Phys. Rev. E 75 056608
[19] Guerra R, Vanossi A and Ferrario M 2007 Surf. Sci. 601 3676
[20] Li Y W, Lei Y M and Yang Y G 2021 Acta Phys. Sin. 70 090501 (in Chinese)
[21] Capozza R, Vanossi A, Vezzani A and Zapperi S 2012 Tribol. Lett. 48 95
[22] Honeycutt R L 1992 Phys. Rev. A 45 604
[1] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[2] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[3] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[4] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[5] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[6] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[7] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[8] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[9] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[10] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[11] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[12] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[13] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[14] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[15] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
No Suggested Reading articles found!