CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field |
Zhou Hao-Miao (周浩淼)a b, Chen Qing (陈晴)a, Deng Juan-Hu (邓娟湖)a |
a College of Information Engineering, China Jiliang University, Hangzhou 310018, China; b Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an electric field. This model can effectively predict the experimental phenomenon that the FMR frequency increases under a parallel magnetic field and decreases under a perpendicular magnetic field when the electric field ranges from-10 kV/m to 10 kV/m. Besides, this theory further shows that the FMR frequency increases monotonically as the angle between the direction of the external magnetic field and the outside normal direction of the laminated structure increases, and the frequency will increase as great as 7 GHz. In addition, when the angle reaches a certain critical value, the external electric field fails to tune the FMR frequency. When the angle is above the critical value, the increase of the electric field induces the FMR frequency to increase, and the opposite scenario happens when it is below the critical value. When the angle is 90° (parallel magnetic field), the FMR frequency is the most sensitive to the change of the electric field.
|
Received: 15 July 2013
Revised: 11 October 2013
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
77.65.-j
|
(Piezoelectricity and electromechanical effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10802082 and 11172285), the Natural Science Foundation of Zhejiang Province of China (Grant No. LR13A020002), and the China Postdoctoral Science Foundation (Grant Nos. 20100480089 and 201104727). |
Corresponding Authors:
Zhou Hao-Miao
E-mail: zhouhm@cjlu.edu.cn
|
About author: 75.85.+t; 75.80.+q; 76.50.+g; 77.65.-j |
Cite this article:
Zhou Hao-Miao (周浩淼), Chen Qing (陈晴), Deng Juan-Hu (邓娟湖) Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field 2014 Chin. Phys. B 23 047502
|
[1] |
Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
|
[2] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[3] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[4] |
Fetisov Y K, Fetisov L Y and Srinivasan G 2009 Appl. Phys. Lett. 94 132507
|
[5] |
Ni Y, Shashank P and Khachaturyan A G 2009 J. Appl. Phys. 105 083914
|
[6] |
Yu X J, Wu T Y and Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)
|
[7] |
Zhou Y, Chen M G, Feng Z J, Wang X Y, Cui Y J and Zhang J C 2011 Chin. Phys. Lett. 28 107503
|
[8] |
Pei Y M, Xu K X, Zeng A M and Ai S G 2012 Chin. Phys. Lett. 29 057801
|
[9] |
Li P, Huang X and Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese)
|
[10] |
Bi K, Ai Q W, Yang L, Wu W and Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese)
|
[11] |
Chen L, Li P, Wen Y M and Zhu Y 2013 Chin. Phys. B 22 077505
|
[12] |
Bi K, Wu W and Wang Y G 2011 Chin. Phys. B 20 067503
|
[13] |
Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
|
[14] |
Bichurin M I, Viehland D and Srinivasan G 2007 J. Electroceram. 19 243
|
[15] |
Tatarenko A S, Gheevarughese V, Srinivasan G, Antonenkov O V and Bichurin M I 2010 J. Electroceram. 24 5
|
[16] |
Zheng H and Yang C T 2010 Acta Phys. Sin. 59 5055 (in Chinese)
|
[17] |
Bichurin M I, Kornev I A, Petrov V M, Tatarenko A S, Kiliba Y V and Srinivasan G 2001 Phys. Rev. B 64 094409
|
[18] |
Shastry S, Srinivasan G, Bichurin M I, Petrov V M and Tatarenko A S 2004 Phys. Rev. B 70 064416
|
[19] |
Ustinov A B, Tiberkevich V S, Srinivasan G, Slavin A N, Semenov A A, Karmanenko S F, Kalinikos B A, Mantese J V and Ramer R 2006 J. Appl. Phys. 100 093905
|
[20] |
Fetisov Y K and Srinivasan G 2006 Appl. Phys. Lett. 88 143503
|
[21] |
Fetisov Y K and Srinivasan G 2008 Appl. Phys. Lett. 93 033508
|
[22] |
Ustinov A B, Srinivasan G and Fetisov Y K 2008 J. Appl. Phys. 103 063901
|
[23] |
Srinivasan G, Tatarenko A S and Bichurin M I 2005 Electron. Lett. 41 596
|
[24] |
Tatarenko A S, Gheevarughese V and Srinivasan G 2006 Electron. Lett. 42 540
|
[25] |
Fetisov Y K and Srinivasan G 2005 Electron. Lett. 41 1066
|
[26] |
Petrov R V, Tatarenko A S, Pandey S, Srinivasan G, Mantese J V and Azadegan R 2008 Electron. Lett. 44 506
|
[27] |
Geiler A L, Gillette S M, Chen Y, Wang J, Chen Z, Yoon S D, He P, Gao J, Vittoria C and Harris V G 2010 Appl. Phys. Lett. 96 053508
|
[28] |
Tatarenko A S, Ustinov A B, Srinivasan G, Petrov V M and Bichurin M I 2010 J. Appl. Phys. 108 063923
|
[29] |
Lou J, Reed D, Liu M, Pettiford C and Sun N X 2009 IEEE/MTT-S International Microwave Symposium, June 7-12, 2009, Boston, USA, p. 33
|
[30] |
Bichurin M I, Petrov V M, Averkin1 S V, Filippov A V, Liverts E, Mandal S and Srinivasan G 2009 J. Phys. D: Appl. Phys. 42 215001
|
[31] |
Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G and Sun N X 2009 Adv. Func. Mater. 19 1826
|
[32] |
Srinivasan G, Tatarenko A S, Mathe V and Bichurin M I 2009 Eur. Phys. J. B 71 371
|
[33] |
Bichurin M I, Petrov V M and Galkina T A 2009 Eur. Phys. J. Appl. Phys. 45 30801
|
[34] |
Pettiford C, Dasgupta S, Lou J, Yoon S D and Sun N X 2007 IEEE Trans. Mag. 43 3343
|
[35] |
Bichurin M I, Petrov V M, Averkin S V and Liverts E 2010 J. Appl. Phys. 107 053905
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|