Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047502    DOI: 10.1088/1674-1056/23/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field

Zhou Hao-Miao (周浩淼)a b, Chen Qing (陈晴)a, Deng Juan-Hu (邓娟湖)a
a College of Information Engineering, China Jiliang University, Hangzhou 310018, China;
b Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Abstract  Based on Smith-Beljers theory and classical laminate theory, an explicit model is proposed for the ferromagnetic resonance (FMR) frequency shift of a stress-mediumed laminated magnetoelectric structure tuned by an electric field. This model can effectively predict the experimental phenomenon that the FMR frequency increases under a parallel magnetic field and decreases under a perpendicular magnetic field when the electric field ranges from-10 kV/m to 10 kV/m. Besides, this theory further shows that the FMR frequency increases monotonically as the angle between the direction of the external magnetic field and the outside normal direction of the laminated structure increases, and the frequency will increase as great as 7 GHz. In addition, when the angle reaches a certain critical value, the external electric field fails to tune the FMR frequency. When the angle is above the critical value, the increase of the electric field induces the FMR frequency to increase, and the opposite scenario happens when it is below the critical value. When the angle is 90° (parallel magnetic field), the FMR frequency is the most sensitive to the change of the electric field.
Keywords:  ferromagnetic resonance (FMR)      piezoelectric/ferrite laminates      converse magnetoelectric effect      microwave devices  
Received:  15 July 2013      Revised:  11 October 2013      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10802082 and 11172285), the Natural Science Foundation of Zhejiang Province of China (Grant No. LR13A020002), and the China Postdoctoral Science Foundation (Grant Nos. 20100480089 and 201104727).
Corresponding Authors:  Zhou Hao-Miao     E-mail:  zhouhm@cjlu.edu.cn
About author:  75.85.+t; 75.80.+q; 76.50.+g; 77.65.-j

Cite this article: 

Zhou Hao-Miao (周浩淼), Chen Qing (陈晴), Deng Juan-Hu (邓娟湖) Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field 2014 Chin. Phys. B 23 047502

[1] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Spaldin N A and Fiebig M 2005 Science 309 391
[4] Fetisov Y K, Fetisov L Y and Srinivasan G 2009 Appl. Phys. Lett. 94 132507
[5] Ni Y, Shashank P and Khachaturyan A G 2009 J. Appl. Phys. 105 083914
[6] Yu X J, Wu T Y and Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)
[7] Zhou Y, Chen M G, Feng Z J, Wang X Y, Cui Y J and Zhang J C 2011 Chin. Phys. Lett. 28 107503
[8] Pei Y M, Xu K X, Zeng A M and Ai S G 2012 Chin. Phys. Lett. 29 057801
[9] Li P, Huang X and Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese)
[10] Bi K, Ai Q W, Yang L, Wu W and Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese)
[11] Chen L, Li P, Wen Y M and Zhu Y 2013 Chin. Phys. B 22 077505
[12] Bi K, Wu W and Wang Y G 2011 Chin. Phys. B 20 067503
[13] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
[14] Bichurin M I, Viehland D and Srinivasan G 2007 J. Electroceram. 19 243
[15] Tatarenko A S, Gheevarughese V, Srinivasan G, Antonenkov O V and Bichurin M I 2010 J. Electroceram. 24 5
[16] Zheng H and Yang C T 2010 Acta Phys. Sin. 59 5055 (in Chinese)
[17] Bichurin M I, Kornev I A, Petrov V M, Tatarenko A S, Kiliba Y V and Srinivasan G 2001 Phys. Rev. B 64 094409
[18] Shastry S, Srinivasan G, Bichurin M I, Petrov V M and Tatarenko A S 2004 Phys. Rev. B 70 064416
[19] Ustinov A B, Tiberkevich V S, Srinivasan G, Slavin A N, Semenov A A, Karmanenko S F, Kalinikos B A, Mantese J V and Ramer R 2006 J. Appl. Phys. 100 093905
[20] Fetisov Y K and Srinivasan G 2006 Appl. Phys. Lett. 88 143503
[21] Fetisov Y K and Srinivasan G 2008 Appl. Phys. Lett. 93 033508
[22] Ustinov A B, Srinivasan G and Fetisov Y K 2008 J. Appl. Phys. 103 063901
[23] Srinivasan G, Tatarenko A S and Bichurin M I 2005 Electron. Lett. 41 596
[24] Tatarenko A S, Gheevarughese V and Srinivasan G 2006 Electron. Lett. 42 540
[25] Fetisov Y K and Srinivasan G 2005 Electron. Lett. 41 1066
[26] Petrov R V, Tatarenko A S, Pandey S, Srinivasan G, Mantese J V and Azadegan R 2008 Electron. Lett. 44 506
[27] Geiler A L, Gillette S M, Chen Y, Wang J, Chen Z, Yoon S D, He P, Gao J, Vittoria C and Harris V G 2010 Appl. Phys. Lett. 96 053508
[28] Tatarenko A S, Ustinov A B, Srinivasan G, Petrov V M and Bichurin M I 2010 J. Appl. Phys. 108 063923
[29] Lou J, Reed D, Liu M, Pettiford C and Sun N X 2009 IEEE/MTT-S International Microwave Symposium, June 7-12, 2009, Boston, USA, p. 33
[30] Bichurin M I, Petrov V M, Averkin1 S V, Filippov A V, Liverts E, Mandal S and Srinivasan G 2009 J. Phys. D: Appl. Phys. 42 215001
[31] Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G and Sun N X 2009 Adv. Func. Mater. 19 1826
[32] Srinivasan G, Tatarenko A S, Mathe V and Bichurin M I 2009 Eur. Phys. J. B 71 371
[33] Bichurin M I, Petrov V M and Galkina T A 2009 Eur. Phys. J. Appl. Phys. 45 30801
[34] Pettiford C, Dasgupta S, Lou J, Yoon S D and Sun N X 2007 IEEE Trans. Mag. 43 3343
[35] Bichurin M I, Petrov V M, Averkin S V and Liverts E 2010 J. Appl. Phys. 107 053905
[1] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[2] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[3] Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter
Xiao-Hong Li(李小红), Hao-Miao Zhou(周浩淼), Qiu-shi Zhang(张秋实), Wen-Wen Hu(胡文文). Chin. Phys. B, 2016, 25(11): 117505.
No Suggested Reading articles found!