Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046103    DOI: 10.1088/1674-1056/23/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate:A contrastive study

Gong Hui (宫慧), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Wu Xiu (吴秀), Yin Hao-Zhi (尹昊智)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Hybrid plasmon waveguides, respectively, with metamaterial substrate and dielectric substrate are investigated and analyzed contrastively with a numerical finite element method. Basic properties, including propagation length Lp, effective mode area Aeff, and energy distribution, are obtained and compared with waveguide geometric parameters at 1.55 μ. For the waveguide with metamaterial substrate, propagation length Lp increases to several tens of microns and effective mode area Aeff is reduced by more than 3 times. Moreover, the near field region is expanded, leading to potential applications in nanophotonics. Therefore, it could be very helpful for improving the integration density in optical chips and developing functional components on a nanometer scale for all optical integrated circuits.
Keywords:  hybrid plasmon waveguide      metamaterial      propagation length      effective mode area  
Received:  16 June 2013      Revised:  23 August 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201) and the Program for the New Century Excellent Talents in University, China (Grant No. NCET-10-0261).
Corresponding Authors:  Liu Yu-Min     E-mail:  microliuyumin@hotmail.com
About author:  61.46.Km; 78.67.Pt

Cite this article: 

Gong Hui (宫慧), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Wu Xiu (吴秀), Yin Hao-Zhi (尹昊智) Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate:A contrastive study 2014 Chin. Phys. B 23 046103

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Maier S A 2006 IEEE J. Selected Topics Quantum Electron. 12 1671
[3] Liu J T, Xu B Z, Zhang J, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
[4] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[5] Pfeiffer C A, Economou E N and Ngai K L 1974 Phys. Rev. B 10 3038
[6] Khosravi H, Tilley D and Loudon R 1991 J. Opt. Soc. Am. A 8 112
[7] Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C and Guo G P 2009 Appl. Phys. Lett. 95 221109
[8] Shegai T, Huang Y, Xu H and Kall M 2010 Appl. Phys. Lett. 96 103114
[9] Yan R, Pausauskie P, Huang J and Yang P 2009 Proc. Natl. Acad. Sci. 106 21045
[10] Zhang L and Yang S 2013 Chin. Phys. Lett. 30 034208
[11] Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006
[12] Zhang S and Xu H 2012 ACS Nano 6 8128
[13] He Y, He S and Yang X 2012 Opt. Lett. 37 2907
[14] Salandrino A and Engheta N 2006 Phys. Rev. B 74 075103
[15] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[16] Narimanov E, Noginov M, Li H and Barnakov Y 2010 Proceedings of Quantum Electronics and Laser Science Conference, May 16-21, 2010, San Jose, USA
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Foss C A Jr, Hornyak G L, Stockert J A and Martin C R 1994 J. Phys. Chem. 98 2963
[19] He Y, He S, Gao J and Yang X 2012 Opt. Express 20 22372
[20] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi T 1997 Opt. Lett. 22 475
[21] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp: 53-62
[22] Oulton R, Bartal G, Pile D and Zhang X 2008 New J. Phys. 10 105018
[23] Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F and Guo G C 2010 Appl. Phys. Lett. 97 183102
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[6] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[7] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[12] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[13] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
No Suggested Reading articles found!