Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037505    DOI: 10.1088/1674-1056/23/3/037505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Co1-xZnxFe2O4 nanofiber:Synthesized by electrospinning and its magnetic properties

Dai Jian-Feng (戴剑锋)a b, Lu Rui-E (路瑞娥)b, Fu Bi (付比)c, Gao Kun (高锟)d, Zhang Liang-Liang (张亮亮)d
a State Key Laboratory of Gansu Advanced Non Ferrous Metal Materials, Lanzhou 730050, China;
b School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
c Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710000, China;
d State Key Laboratory for Manufacturing Engineering, Xi’an Jiaotong University, Xi’an 710000, China
Abstract  Well-aligned and uniform Co0.8Zn0.2Fe2O4 nanofibers (NFs) are prepared by electrospinning via sol–gel and subsequent heat treatment. Each of the as-spun NFs has a diameter of about 300 nm and a smooth surface morphology. The scanning electron microscope (SEM) image shows that the diameter decreases to 70 nm after the Co0.8Zn0.2Fe2O4 NF has been annealed at 650 ℃ for 3 h. The structure and chemical of Co0.8Zn0.2Fe2O4 NF are investigated by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS), respectively. Single phase cubic spinel structure, Co0.8Zn0.2Fe2O4 NF, is successfully obtained after having been calcined at 550 ℃ in air for 3 h, and a reduced lattice constant of the Co0.8Zn0.2Fe2O4 NF provides the evidence of effective Zn2+ substitution. The magnetic measurements show that the substitution of Zn2+ for Co2+, i.e., the introduction of non-magnetic Zn2+ ions into A sites, can increase the saturation magnetization (Ms) and reduce the coercivity (Hc). The obtained Hc results of different samples reveal that the critical single-domain size of the Co0.8Zn0.2Fe2O4 NF is approximately 44 nm. By doping Zn2+ with different concentrations, the morphologies of Co1-xZnxFe2O4 (0≤ x ≤ 0.5) NFs do not show obvious changes. For magnetic properties, the Ms increases and Hc decreases monotonically, respectively.
Keywords:  alignment      Co0.8Zn0.2Fe2O4      single-domain      Co1-xZnxFe2O4  
Received:  31 May 2013      Revised:  19 July 2013      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50873047) and the Foundation of Gansu Education Department, China (Grant No. 0603-02).
Corresponding Authors:  Dai Jian-Feng     E-mail:  daijf@lut.cn

Cite this article: 

Dai Jian-Feng (戴剑锋), Lu Rui-E (路瑞娥), Fu Bi (付比), Gao Kun (高锟), Zhang Liang-Liang (张亮亮) Co1-xZnxFe2O4 nanofiber:Synthesized by electrospinning and its magnetic properties 2014 Chin. Phys. B 23 037505

[1] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Brian M, Byron G, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
[2] Neuberger T, Schopf B, Hofmann H, Hofmann M and Rechenberg B V 2005 J. Magn. Magn. Mater. 293 483
[3] Sawhney A P S, Condon B, Singh K V, Pang S S, Li G and David H 2008 Text. Res. J. 78 731
[4] Kou X, Fan X, Zhu H and Xiao Q 2009 J. Appl. Phys. Lett. 94 112509
[5] Hu J T, Wang T, Charles M and Lieber 1999 Acc. Chem. Res. 32 435
[6] Kang Y Q, Cao M S, Yuan J, Zhang L, Wen B and Fang X Y 2010 J. Alloys Compd. 495 254
[7] Cao M S, Yang J, Song W L, Zhang D Q, Wen B, Jin H B, Hou Z L and Yuan J 2012 ACS Appl. Mater. Interfaces 4 6949
[8] Skomski R 2003 J. Phys.: Condens. Matter 15 841
[9] Gong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhang K X, Liu M Y, Zhu H and Zhou J F 2012 Chin. Phys. B 21 068101
[10] Bai A Q, Zheng J, Tao Y L, Zuo Y H, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 116103
[11] Ersen O, Begin S, Houlle M, Amadou J, Janowska I, Greneche J M, Crucifix C and Huu C P 2008 Nano Lett. 8 1033
[12] Li D, Amit B, Samson A, Jenekhe and Xia Y N 2004 Adv. Mater. 16 2062
[13] Theron A, Zussman E and Yarin A L 2001 Nanotechnology 12 384
[14] Zhu X L, Cui W G, Li X H and Jin Y 2008 Biomacromolecules 9 1795
[15] Matthews J A, Wnek G E and Simpson D G 2002 Biomacromolecules 3 232
[16] Qing K Y, Sheng C M, Jie Y and Yong F X 2010 Chin. Phys. B 19 017701
[17] Li D and Xia Y N. 2004 Adv. Mater. 16 1151
[18] Sanchez A M, Ákäslompol L, Qin Q H and Dijken S 2012 Cryst. Growth Des. 12 954
[19] Li D, Herricks T and Xia Y N 2003 Appl. Phys. Lett. 83 4586
[20] Ponhan W and Maensiri S 2009 Solid State Sci. 11 479
[21] Gupta A, Shannigrahi H S and Chatterjee R 2011 Appl. Phys. Lett. 98 112901
[22] Arulmurugan G, Vaidyanathan S and Sendhilnathan B 2005 Physica B 368 223
[23] Yafet Y and Kittel C 1952 Phys. Rev. 87 290
[24] Wang L and Li F S 2008 Chin. Phys. B 17 1858
[25] Vaidyanathana G and Sendhilnathan S 2008 Physica B 403 2157
[26] Shen X Q, Xiang J, Song F Z and Liu M Q 2010 Appl. Phys. A 99 189
[27] Islam M U, Rana M U and Abbbas T 1998 Mater. Chem. Phys. 57 190
[28] Vaidyanathan G, Sendhilnathan S and Arulmurgan R 2008 J. Magn. Magn. Mater. 320 803
[29] Dai J F, Wang J H, Mu X W and Chen X T 2011 J. Reinf. Plast. Compos. 30 1179
[30] Chawla S K, Mudsainiyan R K, Meena S S, Yusuf S M and Singh N 2011 AIP Conf. Proc. 1447 1243
[31] Belghazi Y, Schmerber G, Colis S, Rehspringer J L, Berrada A and Dinia A 2007 J. Magn. Magn. Mater. 301 2092
[32] Lu R, Yuan J, Shi H L, Li B, Wang W Z, Wang D W and Cao M S 2013 Cryst. Eng. Commun. 15 3984
[33] Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108
[34] Raghavender A T, Pajic D, Zadro K, Milekovic T, Rao P V, Jadhav K M and Ravinder D 2007 J. Magn. Magn. Mater. 316 1
[35] Montana S and Santi M 2009 Appl. Phys. A 97 167
[36] George M, John A M, Nair S S, Joy P A and Anantharaman M R 2006 J. Magn. Magn. Mater 302 190
[37] Salazar-Alvarez G, Olsson R T, Sort J, Macedo W A A, Ardisson J D, Baró M D, Gedde U W and Nogués J 2007 Chem. Mater. 19 4957
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[7] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[8] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[9] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[10] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[11] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[12] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[13] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[14] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[15] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
No Suggested Reading articles found!