CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys |
Zhang Ya-Zhuo (张雅卓)a, Cao Jia-Mu (曹伽牧)b, Tan Chang-Long (谭昌龙)b, Cao Yi-Jiang (曹一江)b, Cai Wei (蔡伟)c |
a Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China; b College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China; c School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni–Mn–Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni–Mn–Sn under pressure. The pressure increases the relative stability of the martensite with respect to the austenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.
|
Received: 16 July 2013
Revised: 09 August 2013
Accepted manuscript online:
|
PACS:
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
81.30.-t
|
(Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)
|
|
Fund: Project supported by the New Century Excellent Talents in Heilongjiang Provincial University, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial University, China (Grant No. 1251G022), and the National Natural Science Foundation of China (Grant Nos. 50901026 and 51301054). |
Corresponding Authors:
Zhang Ya-Zhuo
E-mail: zhangyazhuo@hit.edu.cn
|
Cite this article:
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟) Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys 2014 Chin. Phys. B 23 037504
|
[1] |
Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
|
[2] |
Koyama K, Watanabe K, Kanomata T, Kainuma R, Oikawa K and Ishida K 2006 Appl. Phys. Lett. 88 132505
|
[3] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
|
[4] |
Ye M, Kimura A, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K and Kanomata T 2010 Phys. Rev. Lett. 104 176401
|
[5] |
Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
|
[6] |
Hernando B, Sánchez Llamazares J L, Santos J D, Prida V M, Baldomir D, Serantes D, Varga R and González J 2008 Appl. Phys. Lett. 92 132507
|
[7] |
Xuan H C, Xie K X, Wang D H, Han Z D, Zhang C L, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 242506
|
[8] |
Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H and Du Y M 2010 Appl. Phys. Lett. 97 052506
|
[9] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nature Mater. 4 450
|
[10] |
Kainuma R, Imano Y, ItoW, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O and Kanomata T 2006 Appl. Phys. Lett. 88 192513
|
[11] |
Chatterjee S, Giri S, Majumdar S and De S K 2008 Phys. Rev. B 77 012404
|
[12] |
Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K and Ishida K 2006 Appl. Phys. Lett. 89 182510
|
[13] |
Ma S C, Wang D H, Zhong Z C, Luo J M, Xu J L and Du Y W 2013 Appl. Phys. Lett. 102 032407
|
[14] |
Esakki Muthu S, Rama Rao N V, Manivel Raja M, Arumugam S, Matsubayasi K and Uwatoko Y 2011 J. Appl. Phys. 110 083902
|
[15] |
Chieda Y, Kanomata T, Fukushima K, Matsubayashi K, Uwatoko Y, Kainuma R, Oikawa K, Ishida K, Obara K and Shishido T 2009 J. Alloys Comp. 486 51
|
[16] |
Yasuda T, Kanomata T, Saito T, Yosida H, Nishihara H, Kainuma R, Oikawa K, Ishida K, Neumann K U and Ziebeck K R A 2007 J. Magn. Magn. Mater. 310 2770
|
[17] |
Şaşioğlu E, Sandratskii L M and Bruno P 2005 Phys. Rev. B 71 214412
|
[18] |
Tan C L, Jiang J X, Tian X H and Cai W 2010 Chin. Phys. B 19 107102
|
[19] |
Segall M, Lindan P, Probet M, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys.: Condens. Matter 14 2717
|
[20] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[21] |
Velikokhatnyi O I and Nuamov I I 1999 Phys. Solid State 41 617
|
[22] |
Chakrabarti A, Biswas C, Banik S, Dhaka R S, Shukla A K and Barman S R 2005 Phys. Rev. B 72 073103
|
[23] |
Kanomata T, Kyuji S, Nashima O, Ono F, Kaneko T and Endo S 2012 J. Alloys Comp. 518 19
|
[24] |
Chakrabarti A, Biswas C, Banik S, Dhaka R S, Shukla A K and Barman S R 2005 Phys. Rev. B 72 073103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|