Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017302    DOI: 10.1088/1674-1056/23/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical binding forces between plasmonic nanocubes:A numerical study based on discrete-dipole approximation

Zhang Xiao-Ming (张小明), Xiao Jun-Jun (肖君军), Zhang Qiang (张强)
College of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Abstract  Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the optical forces in three-dimensional gold nanocube dimers. For a fixed center-to-center separation, the rotation of the plasmonic nanocube leads to a slight shift of the plasmonic resonance wavelength and a strong change in the optical binding forces. The effective gap and the near field distribution between the two nanocubes are shown to be crucial to this force variation. We further find that the optical binding force is dominated by the scattering process while the optical forces in the wavevector direction are affected by both scattering and absorption, making the former relatively more sensitive to the rotation of (an effective gap between) the nanocubes. Our results would be useful for building all-optically controllable meta-surfaces.
Keywords:  optical binding force      nanocube dimer      surface plasmon resonance  
Received:  14 May 2013      Revised:  26 June 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004043, 11274083, and 61107036) and the SZMSTP, China (Grant Nos. JC201005260185A, JCYJ20120613114137248, 2011PTZZ048, JC201105160524A, and KQCX20120801093710373).
Corresponding Authors:  Xiao Jun-Jun     E-mail:  eiexiao@hitsz.edu.cn

Cite this article: 

Zhang Xiao-Ming (张小明), Xiao Jun-Jun (肖君军), Zhang Qiang (张强) Optical binding forces between plasmonic nanocubes:A numerical study based on discrete-dipole approximation 2014 Chin. Phys. B 23 017302

[1] Chen H J, Shao L, Li Q and Wang J F 2013 Chem. Soc. Rev. 42 2679
[2] Wu X, Ming T, Wang X, Wang P N, Wang J F and Chen J Y 2010 ACS Nano 4 113
[3] Chen H Y, He C L, Wang C Y, Lin M H, Mitsui D, Eguchi M, Teranishi T and Gwo S 2011 ACS Nano 5 8223
[4] Svedberg F, Li Z, Xu H and Käll M 2006 Nano Lett. 6 2639
[5] Gandra N, Abbas A, Tian L and Singamaneni S 2012 Nano Lett. 12 2645
[6] Chen H J, Sun Z H, Ni W H, Woo K C, Lin H Q, Sun L D, Wang J F and Yan C H 2009 Small 5 2111
[7] Prodan E, Radloff C, Halas N and Nordlander P 2003 Science 302 419
[8] Amendola V, Bakr O M and Stellacci F 2010 Plasmonics 5 85
[9] Wang X, Xiao K, Min C, Zou Q, Hua Y and Yuan X C 2013 Plasmonics 8 637
[10] Yan Z, Shah R A, Garrett Chado, Gray S K, Pelton M and Scherer N F 2013 ACS Nano 7 1790
[11] Xiao J J, Zheng H H, Sun Y X and Yao Y 2010 Opt. Lett. 35 962
[12] Zhang Q, Xiao J J, Zhang X M and Yao Y 2013 Opt. Express 21 6601
[13] Zhang Q, Xiao J J, Zhang X M and Yao Y 2013 Opt. Commun. 301–302 121
[14] Moreau A, Cirací C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A and Smith D R 2012 Nature 492 86
[15] Miljkovic V D, Pakizeh T, Sepulveda B, Johansson P and Kall M 2010 J. Phys. Chem. C 114 7472
[16] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[17] Evlyukhin A B, Reinhardt C and Chichkov B N 2011 Phys. Rev. B 84 235429
[18] Xiao J J and Chan C T 2008 J. Opt. Soc. Am. B 25 1553
[19] Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
[20] Hoekstra A G, Frijlink M, Waters L B F M and Sloot P M A 2001 J. Opt. Soc. Am. A 18 1944
[21] Chaumet P C and Nieto-Vesperinas M 2000 Phys. Rev. B 61 14119
[22] Karásek V, Brzobohatý O and Zemánek P 2009 J. Opt. A: Pure Appl. Opt. 11 034009
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!