Please wait a minute...
Chin. Phys. B
 

Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: A first-principles study

Chi Song1,Dong-Dong Li2,Yi-Chun Xu1,Bicai Pan3,changsong Liu3, 3
1. 中国科学院固体物理研究所材料物理重点实验室,合肥230031
2. 中国科学技术大学
3.
Abstract  Corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accelerator driven systems (ADS). Using a first-principles method with slab model, we theoretically investigate the interaction between Pb (Bi) atom and the iron (Fe) (100) surface to assess fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The segregation of six common alloying elements (Cr, Al, Mn, Ni, Nb and Si) to the surface and their impact on the corrosion properties are also considered. The present results reveal that Si seems to have relative good performance to stable the surface and alleviate the dissolving trend caused by Pb and Bi.
Keywords:  corrosion property      interface interaction      alloying atom      first-principles  
Received:  06 September 2013      Revised:  23 October 2013      Published:  07 November 2013
Fund: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology);Department of Science and Technology;National key Basic Research Program of China
Corresponding Authors:  changsong Liu   

Cite this article: 

Chi Song Dong-Dong Li Yi-Chun Xu Bicai Pan changsong Liu Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: A first-principles study Chin. Phys. B 0

[1] High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation
Cheng-Bin Zhang, Wei-Dong Li, Ping Zhang, Bao-Tian Wang. Chin. Phys. B, 2021, 30(5): 056202.
[2] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen, Xiang-Qian Li, Lin Xue, Yan Han, Zhi Yang, Long-Long Zhang. Chin. Phys. B, 2021, 30(5): 057101.
[3] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou, Junchao Huang, Xiangmei Duan. Chin. Phys. B, 2021, 30(5): 056801.
[4] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[5] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[6] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[7] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[8] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[9] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[10] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[11] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[12] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[13] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[14] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[15] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
No Suggested Reading articles found!