Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017102    DOI: 10.1088/1674-1056/abb667
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles

Chun-Ying Pu(濮春英)1, Rong-Mei Yu(于荣梅)1, Ting Wang(王婷)2, Zhen-Yan Xüe(薛振彦)1, Yong-Sheng Zhu(朱永胜)1, and Da-Wei Zhou(周大伟)1,
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; 2 Department of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, China
Abstract  Using the particle swarm optimization algorithm on structural search methods, we focus our crystal structures search on boron-rich alkali metal compounds of MB12 (M= Be, Mg, Ca, Sr) with simulation cell sizes of 1-2 formula units (f.u.) at 0 GPa. The structure, electronic, and mechanical properties of MB12 are obtained from the density functional theory using the plane-wave pseudopotential method within the generalized gradient approximations. The formation enthalpies of MB12 regarding to solid metal M and solid alpha-boron suggested the predicted structures can be synthesized except for BeB12. The calculated band structures show MB12 (M= Be, Mg, Ca, Sr) are all indirect semiconductors. All the calculated elastic constants of MB12 satisfy the the mechanical stable conditions. The mechanical parameters (i.e., bulk modulus, shear modulus, and Young's modulus) are derived using the Voigt-Reuss-Hill method. The G/B ratios indicated that the MB12 should exhibit brittle behavior. In addition, the hardness, Debye temperature, universal anisotropic index, and the percentage of anisotropy in compression and shear are also discussed in detail. We hope our results can inspire further experimental study on these boron-rich alkali-metal compounds.
Keywords:  first-principles calculations      structure searching      mechanical properties      boron-rich alkali-metal compounds  
Revised:  27 August 2020      Published:  04 January 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  62.20.Dy  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. U1904179, U1904178, and 51501093), the Key Science Fund of Educational Department of Henan Province, China (Grant Nos. 19A140013 and 20B140010), and the Science Technology Innovation Talents Fund in Universities of Henan Province, China (Grant No. 19HASTIT019).
Corresponding Authors:  Corresponding author. E-mail: zhoudawei@nynu.edu.cn   

Cite this article: 

Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟) Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles 2021 Chin. Phys. B 30 017102

1 Guo J, Fu H, Zou G, Liu B and Peng Q 2015 J. Alloys Compd. 632 68
2 Jiang X and Zhao J 2015 RSC Adv. 5 48012
3 Hermann A, Mcsorley A, Ashcroft N W and Hoffmann R 2012 J. Am. Chem. Soc. 134 18606
4 Wang M, Li Y, Tian C, Ma Y and Zou G2008 Appl. Phys. Lett. 93 294
5 Wang M, Li Y W, Cui T, Ma Y M and Zou G T 2008 Appl. Phys. Lett. 93 101905
6 Liang Y, Gou Y, Xun Y, Zheng Z and Zhang W 2013 Chem. Phys. Lett. 580 48
7 Gou H, Li Z, Wang L M, Lian J and Wang Y 2012 Aip Adv. 2 012171
8 Gou H, Li Z, Wang L M, Lian J and Wang Y2012 Aip Adv. 2 231
9 Liang Y, Xun Y and Zhang W 2011 Phys. Rev. B 83 220102
10 Matkovich V I, Economy J, Giese R F and Barrett R 2010 Acta Crystallogr. 19 1056
11 Placa S L, Binder I and Post B 1961 J. Inorg. Nucl. Chem. 18 113
12 Akopov G, Sobell Z C, Yeung M T and Kaner R B 2016 Inorg. Chem. 55 12419
13 Schmechel R and Werheit H 1999 J. Phys. Condens. Matter 11 6803
14 Werheit H, Filipov V, Shirai K, Dekura H, Shitsevalova N, Schwarz U and Armbrüster M 2011 J. Phys.: Condens. Matter 23 065403
15 Werheit and Helmut2009 J. Phys. Conf. 176 012019
16 Werheit H 2007 J. Phys. Condens. Matter 19 186207
17 Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science 159 530
18 Mar R W and Stout N D 1972 J. Chem. Phys. 57 5342
19 Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W and Kaner R B 2016 Chem. Mater. 28 6605
20 Ma T, Li H, Zheng X, Wang S, Wang X, Zhao H, Han S, Liu J, Zhang R, Zhu P, Long Y, Cheng J, Ma Y, Zhao Y, Jin C and Yu X 2017 Adv. Mater. 29 1604003
21 Slater J C 1964 J. Chem. Phys. 41 3199
22 Cannon J F and Farnsworth P B 1983 Journal of the Less Common Metals 92 359
23 Cannon J F, Cannon D M and Hall H T 1977 Journal of the Less Common Metals 56 83
24 Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
25 Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
26 Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
27 Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H and Xing D 2018 Sci. Bull. 63 817
28 Sun Y, Lv J, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
29 Cui W W, Li Y W 2019 Chin. Phys. B 28 107104
30 Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E and Wang Y 2020 Phys. Rev. Lett. 124 067602
31 Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
32 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
33 Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
34 Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
35 Blöchl P E 1994 Phys. Rev. B 50 17953
36 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
37 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
38 Hill R1952 Proc. Phys. Soc. London 65 350
39 Hill R 1952 Proc. Phys. Soc. A 65 349
40 Hanies J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
41 Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
42 Watt J P 1980 J. Appl. Phys. 50 6290
43 Nye J F1985 Physical properties of crystals (Oxford: Oxford University Press)
44 Chung D H and Buessem W R1968 Plenum Press, New York 2 217
45 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
46 Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[6] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[11] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[12] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[13] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[14] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[15] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
No Suggested Reading articles found!