Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036202    DOI: 10.1088/1674-1056/abca20
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study

Diyou Jiang(姜迪友)1,2,†, Wenbo Xiao(肖文波)1,2, and Sanqiu Liu(刘三秋)3
1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China; 2 Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, China; 3 Department of Physics, Nanchang University, Nanchang 330047, China
Abstract  Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material, and it has advantages in certain aspects compared with Ti2AlC, Ti3AlC2, and Ti3SiC2 structural materials. In this paper, quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural, mechanical, electronic properties, and Debye temperature. Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure (0-110 GPa). At zero pressure, quaternary carbide Ti3NiAl2C ceramics only has three bonds: Ti-Al, Ni-Al, and Ti-C. However, at pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds form. When the pressure reaches 20 GPa, the covalent bonds change to metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72% of its original volume at most. Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics. At 50-60 GPa, its mechanical strength can be comparable to pure tungsten, and the material changes from brittleness to ductility. However, the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure. In addition, we also investigated the Debye temperature, density, melting point, hardness, and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
Keywords:  quaternary carbide Ti3NiAl2C ceramics      structural properties      mechanical properties      electronic properties      Debye temperature      first-principles  
Published:  22 February 2021
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.de (Elastic moduli)  
  62.20.fk (Ductility, malleability)  
  62.20.mj (Brittleness)  
Fund: Project supported by Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB) (Grant No. 21C-OP-202013), the National Natural Science Foundation of China (Grant No. 12064027), the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800), and the Scientific Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ180973).
Corresponding Authors:  Corresponding author. E-mail: jiangdiyou2005@163.com   

Cite this article: 

Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋) Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study 2021 Chin. Phys. B 30 036202

1 Wang J Y and Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415
2 Eklund P, Beckers M, Jansson U, H\"ogberg H and Hultman L 2010 Thin Solid Films. 518 1851
3 Jovic V D, Jovic B M, Gupta S, El-Raghy T and Barsoum M W 2006 Corros. Sci. 48 4274
4 Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X and Pister C 2007 J. Nucl. Mater. 371 176
5 Barnes L A, Dietz Rago N L and Leibowitz L 2008 J. Nucl. Mater. 373 424
6 Wang Q M, Garkas W, Renteria A F, Leyens C, Lee H W and Kim K H 2011 Corros. Sci. 53 2948
7 Haftani M, Saeedi Heydari M, Baharvandi H R and Ehsani N 2016 Int. J. Refract. Met. Hard Mater. 61 51
8 Barsoum M W, Yoo H I, Polushina I K, Rud V Yu, Rud Yu V and El-Raghy T 2000 Phys. Rev. B 62 10194
9 Wang X H and Zhou Y C 2010 J. Mater. Sci. Technol. 26 385
10 Sun Z M 2011 Int. Mater. Rev. 56 143
11 Xiao J, Yang T, Wang C, Xue J and Wang Y 2015 J. Am. Ceram. Soc. 98 1323
12 Clark D W, Zinkle S J, Patel M K and Parish C M 2016 Acta Mater. 105 130
13 Tallman D J, He L, Gan J, Caspi E N, Hoffman E N and Barsoum M W 2017 J. Nucl. Mater. 484 120
14 Wang C, Yang T, Tracy C L, Xiao J, Liu S, Fang Y, Yan Z, Ge W, Xue J, Zhang J, Wang J, Huang Q, Ewing R C and Wang Y 2018 Acta Mater. 144 432
15 Su R R, Zhang H L, Shi L Q and Wen H M 2019 J. Eur. Ceram. Soc. 39 1993
16 Napp\'e J C, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Monnet I 2009 J. Nucl. Mater. 385 304
17 Hoffman E N, Vinson D W, Sindelar R L, Tallman D J, Kohse G and Barsoum M W 2012 Nucl. Eng. Des. 244 17
18 Tallman D J On the Potential of MAX Phases for Nuclear Applications(Drexel University)
19 Li W T, Wang Z Y, Shuai J T, Xu B B, Wang A Y and Ke P L 2019 Ceram. Int. 45 13912
20 Nicola\"í J, Furgeaud C, Fonrose B W, Bail C and Beaufort M F 2018 Mater. Des. 144 209
21 Pazniak A, Bazhin P, Shchetinin I, Kolesnikov E, Prokopets A, Shplis N, Stolin A and Kuznetsov D 2019 Ceram. Int. 45 2020
22 Pazniak A, Bazhin P, Shplis N, Kolesnikov E, Shchetinin I, Komissarov A, Polcak J, Stolin A,Kuznetsov D 2019 Mater. Des. 183 108143
23 Islaka B Y and Ayas E 2019 Ceram. Int. 45 12297
24 Huang X C, Feng Y, Qian G and Zhou Z J 2019 Ceram. Int. 45 20297
25 Sridharan S, Nowotny H and Wayne S F 1983 Monatsh. Chem. 114 127
26 Qin J Q and He D W 2013 Ceram. Int. 39 9361
27 Feng W X, Cui S X, Hu H Q, Zhang G Q and Lv Z T 2011 J. Phys. Chem. Solids 72 740
28 Mao P L, Yu B, Liu Z, Wang F and Ju Y 2014 Comput Mater Sci 88 61
29 Ma Y M, Oganov A R and Xie Y 2008 Phys. Rev. B 78 014102
30 Xiao H Y, Jiang X D, Duan G, Gao F, Zu X T and Weber W J 2010 Comput. Mater. Sci. 48 768
31 Ma S Q, Liu Y, Ye J W, Zhang H and Pang J 2014 Comput. Mater. Sci. 95 620
32 Yuan X L, Wei D Q, Chen X R, Zhang Q M and Gong Z Z 2011 J. Alloys Compd. 509 769
33 Guo F F, Zhou X L, Li G J, Huang X H, Xue L, Liu D S and Jiang D Y 2020 Solid State Commun. 311 113856
34 Jiang D Y, Zhong S Y, Xiao W B, Liu D S, Wu M S and Liu S Q Int. J. Quantum Chem. 120 e26231
35 Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H and Han P D 2015 J. Alloys Compd. 621 383
36 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
37 Feng X K, Shi S Q, Shen J Y, Shang S L, Yao M Y and Liu Z K 2016 J. Nucl. Mater. 479 461
38 Shang S L, Hector Jr L G, Shi S Q, Qi Y, Wang Y and Liu Z K 2012 Acta Mater. 60 5204
39 Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202
40 Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Hangchen Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S and Tang W H 2009 J. Power Sources 194 830
41 Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S and Chen L Q 2009 Phys. Lett. A 373 4096
42 Zhang C Y, Tian F Y and Ni X D 2020 Chin. Phys. B 29 036201
43 Li W J and Wang C Y 2020 Chin. Phys. B 29 026102
44 Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
45 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
46 Bl\"ochl P E 1994 Phys. Rev. B 50 17953
47 Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
48 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
49 Birch F 1978 J. Geophys. Res. 83 1257
50 Voigt W 1889 Annalen der Physik (Leipzig). 38 573
51 Reuss A 1929 Ztschrf. Angew. Math. Mech. 9 49
52 Hill R 1952 Proc. Phys. Soc. A 65 349
53 Hill R 1963 J. Mech. Phys. Solids. 11 357
54 Anderson O L 1963 J. Phys. Chem. Solids 24 909
55 Wachter P, Filzmoser M and Rebizant J 2001 Physica B 293 199
56 Jiang D Y and Liu S Q Rare Metal. Mat. Eng. 45 2895
57 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 106 34
58 Jiang D Y, Wang Q L, Hu W, Wei Z Q, Tong J B and Wan H Q 2016 J. Mater. Res. 31 3401
59 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 112 123
60 Jiang D Y, Ouyang C Y and Liu S Q 2017 Fusion Eng. Des. 121 227
61 Jiang D Y, Zhou Q, Xue L, Wang T and Hu J F 2018 Fusion Eng. Des. 130 56
62 Jiang D Y, Wang T, Huang X H, Zou X Z and Hu J F 2018 Fusion Eng. Des. 137 295
63 Jiang D Y, Zhou Q, Liu W H, Wang T and Hu J F 2019 Physica B 552 165
64 Jiang D Y, Xue L, Huang X M, Wang T and Hu J F 2019 J. Mater. Res. 34 290
65 Jiang D Y, Wu M S, Liu D S, Li F F, Chai M G and Liu S Q 2019 Metals 9 967
66 Luo M, Jiang D Y, Liu S Q and Ouyang C Y 2019 J. Phys. Chem. C 123 1913
67 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
68 Meradji H, Drablia S and Ghemid S 2004 Phys. Status Solidi B 241 2881
69 Pugh S F 1954 Philos. Mag. A. 45 823
70 Gao Q H, Du A and Yang Z J 2017 Mod. Phys. Lett. B 31 1750016
71 Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H and Hou H 2018 Comput. Mater. Sci. 154 365
72 Cao Y, Zhu J C, Liu Y, Nong Z S and Lai Z H 2013 Comput. Mater. Sci. 69 40
73 Tang B Y, Yu W Y, Zeng X Q, Ding W J and Gray M F 2008 Mater. Sci. Eng. A. 489 444
74 Yan M F and Chen H T 2014 Comput. Mater. Sci. 88 81
75 Wu J Y, Zhang B and Zhan Y Z 2017 Comput. Mater. Sci. 131 146
76 Tohei T, Kuwabara A, Oba F and Tanaka I 2006 Phys. Rev. B 73 064304
77 Chen Q, Huang Z W, Zhao Z D and Hu C K 2013 Comput. Mater. Sci. 67 196
78 Richardson R C D 1967 Wear 10 291
79 Xu S H, Zhang F Q, Peng P and Liu J S Acta Metal. Sinica. 46 97
80 Liu Z T Y, Gall D and Khare S V 2014 Phys. Rev. B 90 134102
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[8] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[9] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[10] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[11] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[14] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!