Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016101    DOI: 10.1088/1674-1056/abb3e7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio study on crystal structure and phase stability of ZrC2 under high pressure

Yong-Liang Guo(郭永亮)1,2,†, Jun-Hong Wei(韦俊红)1, Xiao Liu(刘潇)1, Xue-Zhi Ke(柯学志)3, and Zhao-Yong Jiao(焦照勇)2,
1 School of Science and Henan Key Laboratory of Wire and Cable Structures and Materials, Henan Institute of Technology, Xinxiang 453003, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China; 3 School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Abstract  The structural stabilities and crystal evolution behaviors of the hyper stoichiometric compound ZrC2 (carbon rich; C/Zr > 1.0) are studied under ambient and high pressure conditions using first-principles calculations in combination with the particle-swarm optimization algorithm. Six viable structures of ZrC2 in P21/c, Cmmm, Cmc21, P42/nmc, Immm and P6/mmm symmetries are identified. These structures are dynamically stable as their phonon spectra have no imaginary modes at zero pressure or at the selected high-pressure points. Among them, the P21/c phase represents the ground state structure, whereas P21/c, P42/nmc, Immm and P6/mmm phases are part of the phase transition series. The phase order and critical pressures of the phase transition are determined to be approximately 300 GPa according to the equation of states and enthalpy. Furthermore, the mechanical and electronic properties are investigated. The P21/c and Cmc21 phases display a semi-metal nature, whereas the P42/nmc, Immm, P6/mmm and Cmmm phases exhibit a metallic nature. Moreover, the present study reveals considerable information regarding the structural, mechanical and electronic properties of ZrC2, thereby providing key insights into its material properties and evaluating its behavior in practical applications.
Keywords:  crystal structure      phase transition      mechanical property      electronic band      first-principles calculation  
Revised:  21 August 2020      Published:  17 December 2020
PACS:  61.05.-a (Techniques for structure determination)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.20.-x (Mechanical properties of solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904081 and 11975100), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 20A140007), and Research Initiation Fund of Henan Institute of Technology (Grant No. KQ1817).
Corresponding Authors:  Corresponding author. E-mail: ylguo@hait.edu.cn Corresponding author. E-mail: zhy_jiao@htu.cn   

Cite this article: 

Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇) Ab initio study on crystal structure and phase stability of ZrC2 under high pressure 2021 Chin. Phys. B 30 016101

1 Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M and Salem J A 2002 J. Eur. Ceram. Soc. 22 2757
2 Opeka M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887
3 Savino R, Fumo M D S, Paterna D and Serpico M 2005 Aerospace Sci. Technol. 9 151
4 Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S and Cheng L 2011 Solid State Commun. 151 602
5 Katoh Y, Vasudevamurthy G, Nozawa T and Snead L L 2013 J. Nucl. Mater. 441 718
6 Porter I E, Knight T W, Dulude M C, Roberts E and Hobbs J 2013 Nucl. Engin. Design 259 180
7 Snead L L, Katoh Y and Kondo S 2010 J. Nucl. Mater. 399 200
8 Vasudevamurthy G, Katoh Y, Aihara J, Sawa K and Snead L L 2015 J. Nucl. Mater. 464 245
9 Kim D, Chun Y B, Ko M J, Lee H G, Cho M S, Park J Y and Kim W J 2016 J. Nucl. Mater. 479 93
10 Weinberger C R and Thompson G B 2018 J. Am. Ceram. Soc. 101 4401
11 Storms E1967 The refractory carbides (New York: Academic Press)
12 Gusev A I and Rempel A A1994 J. Phys. Chem. Solids 299 14
13 Zhang Y, Liu B and Wang J 2016 Sci. Rep. 5 18098
14 Yu X X, Weinberger C R and Thompson G B 2016 Comput. Mater. Sci. 112 318
15 Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D and Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299
16 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
17 Blöchl P E 1994 Phys. Rev. B 50 17953
18 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
19 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
20 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
22 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
23 Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
24 Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
25 Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502
26 Zhang G T, Bai T T, Yan H Y and Zhao Y R 2015 Chin. Phys. B 24 106104
27 Guo Y L, Wang C Y, Qiu W J, Ke X Z, Huai P, Cheng C, Zhu Z Y and Chen C F 2016 Phys. Rev. B 94 134104
28 Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
29 Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
32 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
33 Cochran W 1959 Phys. Rev. Lett. 3 412
34 Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
35 Born M 1940 Math. Proc. Cambridge Philos. Soc. 36 160
36 Born M and Huang K1954 Dynamical theory of crystal lattices (New York: Clarendon Press)
37 Wu Z J, Zhao E J, Xiang H P, Hao X M, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
38 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
39 Voigt W2014 Lehrbuch der Kristallphysik (MIT Ausschlu\ss der Kristalloptik)(Wiesbaden: Springer-Verlag)
40 Reuss A 1929 J. Appl. Math. Mech. Z. Angew. Math. Mech. 9 49
41 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
42 Green D J1988 An introduction to the mechanical properties of ceramics (Cambridge: Cambridge University Press)
43 Fu H, Peng W and Gao T 2009 Mater. Chem. Phys. 115 789
44 Haines J, Leger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 2001 31 1
45 Pugh S F 1954 Philo. Mag. 45 823
46 Kutepov A L and Kutepova S G 2003 Phys. Rev. B 67 132102
47 Kube C M 2016 AIP Adv. 6 095209
48 Aydin S, Tatar A and Ciftci Y O 2012 J. Nucl. Mater. 429 55
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[8] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[9] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[10] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[14] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!