Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046302    DOI: 10.1088/1674-1056/abdda8

Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries

Junping Hu(胡军平)1, Zhangyin Wang(王章寅)1, Genrui Zhang(张根瑞)1, Yu Liu(刘宇)1, Ning Liu(刘宁)1, Wei Li(李未)1, Jianwen Li(李健文)1, Chuying Ouyang(欧阳楚英)2,†, and Shengyuan A. Yang(杨声远)3
1 Key Laboratory of Optoelectronic Materials and New Energy Technology, Nanchang Institute of Technology, Nanchang 330099, China; 2 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China; 3 Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
Abstract  When developing high performance lithium-ion batteries, high capacity is one of the key indicators. In the last decade, the progress of two-dimensional (2D) materials has provided new opportunities for boosting the storage capacity. Here, based on first-principles calculation method, we predict that MnN monolayer, a recently proposed 2D nodal-loop half-metal containing the metallic element Mn, can be used as a super high-capacity lithium-ion batteries anode. Its theoretical capacity is above 1554 mAh/g, more than four times that of graphite. Meanwhile, it also satisfies other requirements for a good anode material. Specifically, we demonstrate that MnN is mechanically, dynamically, and thermodynamically stable. The configurations before and after lithium adsorption exhibit good electrical conductivity. The study of Li diffusion on its surface reveals a very low diffusion barrier (∼ 0.12 eV), indicating excellent rate performance. The calculated average open-circuit voltage of the corresponding half-cell at full charge is also very low (∼ 0.22 V), which facilitates higher operating voltage. In addition, the lattice changes of the material during lithium intercalation are very small (∼ 1.2%-∼ 4.8%), which implies good cycling performance. These results suggest that 2D MnN can be a very promising anode material for lithium-ion batteries.
Keywords:  first-principles calculations      Li-ion batteries      energy storage      physical propertyies  
Received:  17 December 2020      Revised:  15 January 2021      Accepted manuscript online:  20 January 2021
PACS: (First-principles theory)  
  82.47.Aa (Lithium-ion batteries)  
  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
  96.15.Pf (Physical properties of materials)  
Fund: Project supported by the Scientific Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ190962), the National Natural Science Foundation of China (Grant Nos. 11904153, 51962010, 61961027, 12064026, and 12064014), and Jiangxi Province Natural Science Foundation, China (Grant No. 20202BABL211008).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远) Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries 2021 Chin. Phys. B 30 046302

1 Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
2 Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q and Fu Z W 2017 Nat. Commun. 8 566
3 Lu J, Chen Z, Ma Z, Pan F, Curtiss L A and Amine K 2016 Nat. Nanotech. 11 1031
4 Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y Y, Chen R J and Wu F 2020 Chem. Rev. 120 7020
5 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
6 Hu J P, Xu B, Ouyang C Y, Zhang Y and Yang S A 2016 RSC Adv. 6 27467
7 Shao D, Tang D P, Mai Y J and Zhang L Z 2013 J. Mater. Chem. A 1 15068
8 Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I and Yushin G 2011 Science 334 75
9 Shen Y F, Qian J F, Yang H X, Zhong F P and Ai X P 2020 Small 16 1907602
10 Zeng H H, Xing B L, Zhang C T, Chen L J, Zhao H H, Han X F, Yi G X, Huang G X, Zhang C X and Cao Y J 2020 Energ. Fuel. 34 2480
11 Thomas S, Jung H, Kim S, Jun B, Lee C H and Lee S U 2019 Carbon 148 344
12 Fan K, Ying Y R, Li X Y, Luo X and Huang H T 2019 J. Phys. Chem. C 123 18207
13 Park H, Lee D and Song T 2019 J. Power Sources 414 377
14 Gao L, Ge X, Zuo Z C, Wang F, Liu X Y, Lv M M, Shi S Q, Xu L T, Liu T F, Zhou Q H, Ye X and Xiao S X 2020 Nano Lett. 20 7333
15 Wang Z Q, Wang D, Zou Z Y, Song T, Ni D X, Li Z Z, Shao X C, Yin W J, Wang Y C, Luo W W, Wu M S, Avdeev M, Xu B, Shi S Q, Ouyang C Y and Chen L Q 2020 Natl. Sci. Rev. 7 1768
16 Dahn J R, Zheng T, Liu Y H and Xue J S 1995 Science 270 590
17 Tang Q, Zhou Z and Shen P W 2012 J. Am. Chem. Soc. 134 16909
18 Jing Y, Zhou Z, Cabrera C R and Chen Z. 2013 J. Phys. Chem. C 117 25409
19 Er D, Li J, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interface 6 11173
20 Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interface 7 24016
21 Jiang H R, Lu Z, Wu M C, Ciucci F and Zhao T S 2016 Nano Energy 23 97
22 Zhang X M, Hu J P, Cheng Y, Yang H Y, Yao Y G and Yang S A 2016 Nanoscale 8 15340
23 Shi L, Zhao T S, Xu A and Xu J B 2016 J. Mater. Chem. A 4 16377
24 Wang D S, Gao Y, Liu Y H, Jin D, Gogotsi Y, Meng X, Du F, Chen G and Wei Y J 2017 J. Phys. Chem. C 121 13025
25 Makaremi M, Mortazavi B, Rabczuk T, Ozin G A and Singh C V 2018 ACS Appl. Nano Mater. 2 127
26 Yuan G H, Bo T, Qi X, Liu P F, Huang Z and Wang B T 2019 App. Surf. Sci. 480 448
27 Zhang X M, Jin L, Dai X F, Chen G F and Liu G D 2020 App. Surf. Sci. 527 146849
28 Wu Y Y, Bo T, Zhu X, Wang Z, Wu J, Li Y and Wang B T 2020 App. Surf. Sci. 513 145821
29 Lei S F, Chen X F, Xiao B B, Zhang W T and Liu J 2019 ACS Appl. Mater. Inter. Interface 11 28830
30 Mortazavi B, Shahrokhi M, Madjet M E, Makaremi M, Ahzi S and Rabczuk T 2019 Carbon 141 291
31 Wu Y Y, Bo T, Zhang J, Lu Z, Wang Z, Li Y and Wang B T 2019 Phys. Chem. Chem. Phys. 21 19513
32 Zhang J N, Xu L Q, Yang C, Zhang X Y, Ma L, Zhang M and Lu J 2020 Appl. Surf. Sci. 510 145493
33 Hu J P, Ouyang C Y, Yang S A and Yang H Y 2019 Nanoscale Horiz. 4 457
34 Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202
35 Wang S S, Yu Z M, Liu Y, Jiao Y, Guan S, Sheng X L and Yang S A 2019 Phys. Rev. Mater. 3 084201
36 Xu Z M and Zhu H 2018 J. Phys. Chem. C 122 14918
37 Sorokin P B, Kvashnin A G, Zhu Z and Tomanek D 2014 Nano Lett. 14 7126
38 Santonen T and Aitio A 2012 Manganese and rehnium In Patty's Toxicology (6th Edn.) (New York: John Wiley & Sons, Inc) p. 609
39 Kresse G and Joubert J 1999 Phys. Rev. B. 59 1758
40 Blöchl P E 1994 Phys. Rev. B. 50 17953
41 Kresse G and Hafner J 1993 Phys. Rev. B. 47 558
42 Kresse G 1996 Phys. Rev. B. 54 11169
43 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
44 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
45 Nye J F 1985 Physical properties of crystals(Clarendon Press)
46 Cadelano E, Palla P L, Giordano S and Colombo L 2010 Phys. Rev. B 82 235414
47 Wang W L and Li Z B. 2011 J Appl. Phys. 109 114308
48 Henkelman G, Uberuaga B P and Jònsson H 2000 J. Chem. Phys. 113 9901
49 Zhang Y 2017 Comput. Conden. Matt. 10 35
50 Xiao H L, Wu H and Chi X B 2009 Proceedings of GridNets', October 8-10, 2008, Berlin, Heidelberg p. 35
[1] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[2] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[5] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[8] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[9] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[10] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[11] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[12] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[13] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[14] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[15] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
No Suggested Reading articles found!