Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027305    DOI: 10.1088/1674-1056/abc0e1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms

Shuai Yang(杨帅)1, Zhiyong Wang(王志勇)1,†, Xueqiong Dai(戴学琼)2, Jianrong Xiao(肖剑荣)1, and Mengqiu Long(龙孟秋)3
1 College of Science, Guilin University of Technology, Guilin 541008, China; 2 Modern Education Technology Center, Guilin University of Technology, Guilin 541008, China; 3 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China
Abstract  We have investigated the electronic and magnetic properties of zigzag phosphorene nanoribbons (ZPNRs) with transition metal (TM) passivated atoms, it can be found that the ZPNRs with TM passivated atoms exhibit different magnetisms except for the Ni-passivated system. Meanwhile, the results show that the magnetic moments of ZPNRs with TM passivated atoms are larger than that of ZPNRs with other passivated non-metals/groups. Interestingly, it can be found that Fe-passivated ZPNR exhibits magnetic semiconducting character, which provides the possbility for the application of phosphorene in information storage. For Mn-passivated ZPNRs, it exhibits the half-metallicity. These results may be useful for potential applications of phosphorene in electronic and high-performance spintronic devices.
Keywords:  phosphorene      first-principles calculations      half-metallicity      passivated  
Published:  29 January 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
  74.20.Pq (Electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11564008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2017GXNSFAA198195), and the Shanghai Supercomputer Center.
Corresponding Authors:  Corresponding author. E-mail: zhiyongwang@glut.edu.cn   

Cite this article: 

Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋) A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms 2021 Chin. Phys. B 30 027305

1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
2 Zhang D, Long M Q, Cui L L, Xiao J and Pan C N 2018 Organic Electronics 62 253
3 Dong Y L, Zeng B W, Xiao J, Zhang X J, Li D D, Li M J and Long M Q 2018 J. Phys.: Condens. Matter 30 125302
4 Fei R X, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
5 Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
6 Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L and Blanter S I 2014 2D Materials 1 025001
7 Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766
8 Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van d Z H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
9 Li P K and Appelbaum I 2014 Phys. Rev. B 90 115439
10 Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tom\'anek D and Ye P D 2014 ACS Nano 8 4033
11 Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
12 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
13 Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146
14 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014
15 Xia F N, Wang, H and Jia Y C 2014 Nat. Commun. 5 4458
16 Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and özyilmaz B 2014 Appl. Phys. Lett. 104 103106
17 Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M, Lou J, Xu X F and Ye P D 2014 ACS Nano 8 8292
18 Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Materials 2 011002
19 Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
20 Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J and S\'anchez C 2015 Appl. Phys. Lett. 106 022102
21 Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
22 Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
23 Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S and Briddon P 2013 J. Phys. Chem. C 117 26790
24 Xu H K, Ouyang G 2020 Chin. Phys. B 29 037302
25 Peng X, Copple A and Wei Q 2014 J. Appl. Phys. 116 144301
26 Huang J H, Wang X F, Liu Y S and Zhou L P 2019 Nanoscale Res. Lett. 14 145
27 Sisakht, E T, Zare, M H and Fazileh F 2015 Phys. Rev. B 91 085409
28 Tran V and Yang L 2014 Phys. Rev. B 89 245407
29 Ezawa M 2014 New J. Phys. 16 115004
30 Zhu Z L, Li C, Yu W Y, Chang D H, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105
31 Ren Y, Cheng F, Zhang Z H and Zhou G 2018 Sci. Rep. 8 2932
32 Tang Y, Zhou W, Hu C, Pan J and Ouyang F 2019 Phys. Chem. Chem. Phys. 21 18551
33 Chen N, Wang Y, Mu Y, Fan Y and Li S D 2017 Phys. Chem. Chem. Phys. 19 25441
34 Perkins F K, Friedman A L, Cobas E, Campbell P M and Jernigan G G 2013 Nano Lett. 13 668
35 Ordejòn Pablo, Artacho E and Soler José M 1996 Phys. Rev. B 53 10441
36 Daniel S\'anchez-Portal, Pablo Ordejòn, Artacho E and José M Soler 1997 Int. J. Quantum Chem. 65 453
37 José M Soler, Artacho E, Gale J D, Alberto Garc\'ía and Daniel S\'anchez-Portal Physics 2002 J. Phys.: Condens. Matter 14 2745
38 Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
39 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
40 Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[1] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[7] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[8] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[9] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[10] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[11] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[12] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[13] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[14] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[15] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
No Suggested Reading articles found!