Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034401    DOI: 10.1088/1674-1056/abd2a6
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures

Zheng Chang(常征)1, Kunpeng Yuan(苑昆鹏)1, Zhehao Sun(孙哲浩)1, Xiaoliang Zhang(张晓亮)1,†, Yufei Gao(高宇飞)1,‡, Xiaojing Gong(弓晓晶)2,§, and Dawei Tang(唐大伟)1,§
1 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; 2 Institute of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract  The van der Waals (vdW) heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators. Here, by using the first-principles calculations and the phonon Boltzmann transport equation (BTE), we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures (WS2/WSe2-BHs). The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature (RT) was 62.98 W/mK, which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers. Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling, mainly dominating the lattice thermal conductivity. Further, we also noticed that the phonon mean free path (MFP) of the WS2/WSe2-BHs (233 nm) was remarkably attenuated by the free-standing monolayer WS2 (526 nm) and WSe2 (1720 nm), leading to a small significant size effect of the WS2/WSe2-BHs. Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
Keywords:  WS2/WSe2 bilayer heterostructures      thermal transport      first-principles      Boltzmann transport equation  
Received:  03 August 2020      Revised:  07 December 2020      Accepted manuscript online:  11 December 2020
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51720105007, 51806031, 11602149, and GZ1257) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT16RC(3)116 and DUT19RC(3)006). The computing resources from Supercomputer Center of Dalian University of Technology and ScGrid are greatly acknowledged.
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail: §Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟) First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures 2021 Chin. Phys. B 30 034401

1 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107
2 Terrones H, L\'opez-Ur\'ías F and Terrones M 2013 Scientific Reports 3 1
3 Zhao W, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A and Eda G 2013 Nano Lett. 13 5627
4 Liu X and Zhang Y W 2018 Chin. Phys. B 27 034402
5 Mak K F, Shan J and Heinz T F 2011 Phys. Rev. Lett. 106 046401
6 Li H, Wu J, Yin Z and Zhang H 2014 Accounts of Chemical Research 47 1067
7 Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J and Li J 2014 Nano Lett. 14 3185
8 Kumar S and Schwingenschl\"ogl U 2015 Chemistry of Materials 27 1278
9 Gandi A N and Schwingenschl\"ogl U 2014 Chemistry of Materials 26 6628
10 Ma J J, Zheng J J, Zhu X L, Liu P F, Li W D and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10442
11 Gao Y, Zhang X, Tang D and Hu M 2019 Carbon 143 189
12 Hicks L and Dresselhaus M S 1993 Phys. Rev. B 47 12727
13 Adessi C, Thebaud S, Bouzerar R and Bouzerar G 2017 J. Phys. Chem. C 121 12577
14 Lee C, Hong J, Lee W R, Kim D Y and Shim J H 2014 Journal of Solid State Chemistry 211 113
15 Wang K, Huang B, Tian M, Ceballos F, Lin M W, Mahjouri-Samani M, Boulesbaa A, Puretzky A A, Rouleau C M and Yoon M 2016 ACS Nano 10 6612
16 Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A and Watanabe K 2018 Science 360 893
17 Li S, Zang W, Liu X, Pennycook S J, Kou Z, Yang C, Guan C and Wang J 2019 Chemical Engineering Journal 359 1419
18 Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717
19 Debbichi L, Eriksson O and Leb`egue S 2014 Phys. Rev. B 89 205311
20 Wang F Q, Liu J, Li X, Wang Q and Kawazoe Y 2017 Appl. Phys. Lett. 111 192102
21 Gao Y, Zhou Y and Hu M 2018 J. Mater. Chem. A 6 18533
22 Gao Y, Zhou Y, Zhang X and Hu M 2018 J. Mater. Chem. C 122 9220
23 Gao Y, Zhang X, Zhou Y and Hu M 2017 J. Mater. Chem. C 5 10578
24 Terrones H and Terrones M 2014 Journal of Materials Research 29 373
25 Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotechnol. 9 1024
26 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
27 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
28 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
29 Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
30 Mabiala-Poaty H, Douma D, M'Passi-Mabiala B and Mapasha R E 2018 Journal of Physics and Chemistry of Solids 120 211
31 Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747
32 Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
34 Feng T and Ruan X 2016 Phys. Rev. B 93 045202
35 Guo S D and Liu J T 2017 Phys. Chem. Chem. Phys. 19 31982
36 Qin D, Yan P, Ding G, Ge X, Song H and Gao G 2018 Scientific Reports 8 1
37 Rashid Z, Nissimagoudar A S and Li W 2019 Phys. Chem. Chem. Phys. 21 5679
38 Liu P F, Bo T, Liu Z, Eriksson O, Wang F, Zhao J and Wang B T 2018 J. Mater. Chem. C 6 12689
39 Molina-Sanchez A and Wirtz L 2011 Phys. Rev. B 84 155413
40 Huang L F, Gong P L and Zeng Z 2014 Phys. Rev. B 90 045409
41 Togo A and Tanaka I 2015 Scripta Materialia 108 1
42 Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903
43 Yuan K, Zhang X, Li L and Tang D 2019 Phys. Chem. Chem. Phys. 21 468
44 Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 RSC Adv. 6 5767
45 Morelli D and Heremans J 2002 Appl. Phys. Lett. 81 5126
46 Peng C, Qin G, Zhang L, Zhang G, Wang C, Yan Y, Wang Y and Hu M 2018 J. Phys. D: Appl. Phys. 51 315303
47 Gu X, Li B and Yang R 2016 J. Appl. Phys. 119 085106
48 Lee S, Esfarjani K, Mendoza J, Dresselhaus M S and Chen G 2014 Phys. Rev. B 89 085206
49 Qin G and Hu M 2018 npj Computational Materials 4 1
50 Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 1
51 Guo R, Jho Y D and Minnich A J 2018 Nanoscale 10 14432
52 Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Research 8 1210
53 Jiang P, Qian X, Gu X and Yang R 2017 Adv. Mater. 29 1701068
54 Mobaraki A, Kandemir A, Yapicioglu H, G\"ulseren O and Sevik C 2018 Computational Materials Science 144 92
55 Gu X, Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002
56 Gu X and Yang R 2015 J. Appl. Phys. 117 025102
57 Minnich A J, Johnson J A, Schmidt A J, Esfarjani K, Dresselhaus M S, Nelson K A and Chen G 2011 Phys. Rev. Lett. 107 095901
58 Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
59 Gao Y, Jing Y, Liu J, Li X and Meng Q 2017 Applied Thermal Engineering 113 1419
60 Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
61 Lindsay L and Broido D 2008 J. Phys.: Condens. Matter 20 165209
62 Slack G A 1979 Solid State Physics 34 1
63 Shao H, Tan X, Hu T, Liu G Q, Jiang J and Jiang H 2015 Europhys. Lett. 109 47004
64 Ding Y and Xiao B 2015 Rsc Advances 5 18391
65 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
66 Morelli D, Jovovic V and Heremans J 2008 Phys. Rev. Lett. 101 035901
67 Yang S S, Hou Y and Zhu L L 2019 Chin. Phys. B 28 086501
68 Cai Y, Pei Q X, Zhang G and Zhang Y W 2016 J. Appl. Phys. 119 065102
69 Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z and Amal R 2012 J. Am. Chem. Soc. 134 4393
[1] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[2] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[3] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[4] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[5] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[6] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[7] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[8] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[9] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[10] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[11] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[12] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[13] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
No Suggested Reading articles found!