Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016402    DOI: 10.1088/1674-1056/abd394

Temperature-induced phase transition of two-dimensional semiconductor GaTe

Xiaoyu Wang(王啸宇)1,†, Xue Wang(王雪)1,†, Hongshuai Zou(邹洪帅)1, Yuhao Fu(付钰豪)2, Xin He(贺欣)1,‡, and Lijun Zhang(张立军)1,§
1 State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China; 2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  GaTe is a two-dimensional III-VI semiconductor with suitable direct bandgap of ∼ 1.65 eV and high photoresponsivity, which makes it a promising candidate for optoelectronic applications. GaTe exists in two crystalline phases: monoclinic (m-GaTe, with space group C2/m) and hexagonal (h-GaTe, with space group P63/mmc). The phase transition between the two phases was reported under temperature-varying conditions, such as annealing, laser irradiation, etc. The explicit phase transition temperature and energy barrier during the temperature-induced phase transition have not been explored. In this work, we present a comprehensive study of the phase transition process by using first-principles energetic and phonon calculations within the quasi-harmonic approximation framework. We predicted that the phase transition from h-GaTe to m-GaTe occurs at the temperature decreasing to 261 K. This is in qualitative agreement with the experimental observations. It is a two-step transition process with energy barriers 199 meV and 288 meV, respectively. The relatively high energy barriers demonstrate the irreversible nature of the phase transition. The electronic and phonon properties of the two phases were further investigated by comparison with available experimental and theoretical results. Our results provide insightful understanding on the process of temperature-induced phase transition of GaTe.
Keywords:  two-dimensional semiconductor GaTe      temperature-induced phase transition      first-principles calculation      quasi-harmonic approximation  
Received:  08 November 2020      Revised:  23 November 2020      Accepted manuscript online:  25 November 2020
PACS:  64.60.-i (General studies of phase transitions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.05.Hd (Other semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62004080), Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143), China Postdoctoral Science Foundation (2020M670834), and Jilin Province Science and Technology Development Program, China (Grant No. 20190201016JC).
Corresponding Authors:  Xiaoyu Wang and Xue Wang contributed equally to this work. Corresponding author. E-mail: §Corresponding author. E-mail:   

Cite this article: 

Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军) Temperature-induced phase transition of two-dimensional semiconductor GaTe 2021 Chin. Phys. B 30 016402

1 Zhao X G, Shi Z, Wang X, Zou H, Fu Y and Zhang L 2020 InfoMat
2 Wang Z, Zhao D, Yu S, Nie Z, Li Y and Zhang L 2019 Progress in Natural Science: Materials International 29 316
3 Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z and Lee C 2020 InfoMat 2 1131
4 Yu F, Hu M, Kang F and Lv R 2018 Progress in Natural Science: Materials International 28 563
5 Huang B Q, Zhou T G, Wu D X, Zhang Z F and Li B K 2019 Acta Phys. Sin. 68 246301 (in Chinese)
6 \cCí nar K, \cCaldí ran Z, Co\cskun C and Aydo\ugan \cS 2014 Thin Solid Films 550 40
7 Pal S and Bose D N 1996 Solid State Commun. 97 725
8 Wang Y, Tian F, Li D, Duan D, Xie H, Liu B, Zhou Q and Cui T 2019 Chin. Phys. B 28 056104
9 Liu F, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I and Tanigaki K 2014 ACS Nano 8 752
10 Wang F, Wang Z, Xu K, Wang F, Wang Q, Huang Y, Yin L and He J 2015 Nano Lett. 15 7558
11 Yang S, Wang C, Ataca C, Li Y, Chen H, Cai H, Suslu A, Grossman J C, Jiang C, Liu Q and Tongay S 2016 ACS Appl. Mater. Interfaces 8 2533
12 Kang J, Sangwan V K, Lee H S, Liu X and Hersam M C 2018 ACS Photon. 5 3996
13 Kolesnikov N N, Borisenko E B, Borisenko D N and Timonina A V 2013 Journal of Crystal Growth 365 59
14 Balitskii O A, Jaeckel B and Jaegermann W 2008 Phys. Lett. A 372 3303
15 Gillan E G and Barron A R 1997 Chem. Mater. 9 3037
16 Semiletov S A and Vlasov V A1963 Kristallografiya 8 877
17 Finkman E and Rizzo A 1974 Solid State Commun. 15 1841
18 Chevy A, Kuhn A and Martin M S 1977 Journal of Crystal Growth 38 118
19 Shen G, Chen D, Chen P C and Zhou C 2009 ACS Nano 3 1115
20 Yu Y, Ran M, Zhou S, Wang R, Zhou F, Li H, Gan L, Zhu M and Zhai T 2019 Adv. Funct. Mater. 29 1901012
21 Zhao Q, Wang T, Miao Y, Ma F, Xie Y, Ma X, Gu Y, Li J, He J, Chen B, Xi S, Xu L, Zhen H, Yin Z, Li J, Ren J and Jie W 2016 Phys. Chem. Chem. Phys. 18 18719
22 McKinley J L and Beran G J O 2019 J. Chem. Theory Comput. 15 5259
23 Henkelman G, Uberuaga B P and Jònsson H 2000 The Journal of Chemical Physics 113 9901
24 Henkelman G and Jònsson H 2000 The Journal of Chemical Physics 113 9978
25 Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
26 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
27 Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J and He L H 2019 Acta Phys. Sin. 68 187301 (in Chinese)
28 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
29 Vetterling W T, Teukolsky S A, Press W H and Flannery B P1989 Numerical recipes (New York: Cambridge University Press)
30 Klime\vs J, Bowler D R and Michaelides A 2009 J. Phys.: Condens. Matter 22 022201
31 Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
32 Liu Z, Na G, Tian F, Yu L, Li J and Zhang L 2020 InfoMat 2 879
33 Yin W, Wen B, Ge Q, Wei X, Teobaldi G and Liu L 2020 Progress in Natural Science: Materials International 30 128
34 Chen A, Zhang X and Zhou Z 2020 InfoMat 2 553
35 Tang X, Gu J, Shang J, Chen Z and Kou L 2020 InfoMat
36 Wang Z, Jiang C, Fang Q, Liu F, Liu B, Fan T, Ma L and Tang P 2020 Progress in Natural Science: Materials International 30 424
37 Wei Y K, Ge N N, Chen X R, Ji G F, Cai L C and Gu Z W 2014 J. Appl. Phys. 115 124904
38 Wang R, Wang S and Wu X 2011 Phys. Scr. 83 065707
39 McKinley J L and Beran G J O 2018 Faraday Discuss. 211 181
40 Kaur K and Kumar R 2016 Progress in Natural Science: Materials International 26 533
41 Hu S Z and Parthé E2004 Jiegou Huaxue 23 11
42 Shenoy U S, Gupta U, Narang D S, Late D J, Waghmare U V and Rao C N R 2016 Chemical Physics Letters 651 148
43 Sun Y, Li Y, Li T, Biswas K, Patan\`e A and Zhang L 2020 Adv. Funct. Mater. 30 2001920
44 Lu P, Kim J S, Yang J, Gao H, Wu J, Shao D, Li B, Zhou D, Sun J, Akinwande D, Xing D and Lin J F 2016 Phys. Rev. B 94 224512
45 Brebner J, Fischer G and Mooser E 1962 Journal of Physics and Chemistry of Solids 23 1417
46 Tatsuyama C, Watanabe Y, Hamaguchi C and Nakai J 1970 J. Phys. Soc. Jpn. 29 150
47 Vega J J F2017 Bandgap engineering of gallium telluride (Berkeley: University of California)
48 Susoma J, Lahtinen J, Kim M, Riikonen J and Lipsanen H 2017 AIP Advances 7 015014
49 Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R and Dresselhaus M S 2016 ACS Nano 10 8964
50 Bae C J, McMahon J, Detz H, Strasser G, Park J, Einarsson E and Eason D B 2017 AIP Advances 7 035113
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[3] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[4] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[5] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[6] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[10] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[11] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[12] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[13] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[14] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[15] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
No Suggested Reading articles found!