Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026301    DOI: 10.1088/1674-1056/abc0db
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst

Jia Shi(史佳), Lei Wang(王蕾)†, and Qiang Gu(顾强)‡
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application, C-doping or oxygen vacancy (Vo) as a single defect in ZnO still has limitations for photocatalytic activity. Meanwhile, the influence of co-existence of various defects in ZnO still lacks sufficient studies. Therefore, we investigate the photocatalytic properties of ZnOxC0.0625 (x = 0.9375, 0.875, 0.8125), confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO. To clarify the underlying mechanism of co-existence of various defects in ZnO, we perform systematically the electronic properties calculations using density functional theory. It is found that the co-effect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO. Moreover, the impact of the effective masses of ZnOxC0.0625 (x = 0.9375, 0.875, 0.8125) is also taken into account. In comparison with heavy Vo concentrations, the light Vo concentration (x=0.875) as the optimal component together with C-doping in ZnO, can significantly improve the visible-light absorption and benefit photocatalytic activity.
Keywords:  first-principles theory      electron density of states and band structure of crystalline solids      III-V and II-VI semiconductors  
Published:  26 January 2021
PACS:  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874038) and the State Key Laboratory of Advanced Metallurgy Foundation in China (Grant No. KF19-03).
Corresponding Authors:  Corresponding author. E-mail: leiw_phy@ustb.edu.cn Corresponding author. E-mail: qgu@ustb.edu.cn   

Cite this article: 

Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强) First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst 2021 Chin. Phys. B 30 026301

1 Fujishima A and Honda K 1972 Nature 238 37
2 Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H and Dionysiou D D 2012 Appl. Catal. B 125 331
3 Ajmal A, Majeed I, Malik R N, Idrissc H and Nadeem M A 2014 RSC Adv. 4 37003
4 Xu P, Xu T, Lu J, Gao S M, Hosmane N S, Huang B B, Dai Y and Wang Y B 2010 Energy Environ. Sci. 3 1128
5 Maeda K, Teramura K, Lu D L, Saito N, Inoue Y and Domen K 2006 Angew. Chem. Int. Ed. 45 7806
6 Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y and Chen K H 2012 Nanoscale 4 6515
7 Wang F X, Liang L, Shi L, Liu M S and Sun J M 2014 Dalton Trans. 43 16441
8 Chen H M, Chen C K, Chang Y C, Tsai C W, Liu R S, Hu S F, Chang W S and Chen K H 2010 Angew. Chem. 122 6102
9 Cho S, Jang J W, Lee J S and Lee K H 2010 CrystEngComm 12 3929
10 Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340
11 Liu S W, Li C, Yu J G and Xiang Q J 2011 CrystEngComm. 13 2533
12 Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
13 Ouyang H B, Huang J F, Li C Y, Cao L Y and Fei J 2013 Mater. Lett. 111 217
14 Khan S U M, Al-Shahry M and Ingler J W B 2002 Science 297 2243
15 Jiang Z, Kong L, Alenazey F S, Qian Y D, France L, Xiao T C and Edwards P P 2013 Nanoscale 5 5396
16 Alshammari A S, Chi L N, Chen X P, Bagabas A, Kramer D, Alromaeh A and Jiang Z 2015 RSC Adv. 5 27690
17 Xiao H, Shan Y W, Zhang W Y, Huang L L, Chen L H, Ni Y H, Boury B and Wu H 2020 Carbohydr. Polym. 235 115958
18 Zong X, Sun C H, Yu H, Chen Z G, Xing Z, Ye D L, Lu G Q, Li X Y and Wang L Z 2013 J. Phys. Chem. C 117 4937
19 Reddy I N, Reddy Ch V, Shim J, Akkinepally B, Cho M, Yoo K and Kim D 2020 Catal. Today 340 277
20 Lin L, Zheng R Y, Xie J L, Zhu Y X and Xie Y C 2007 Appl. Catal. B 76 196
21 Li M, Zhang J Y, Dang W Q, Cushing S K, Guo D, Wu N Q and Yin P G 2013 Phys. Chem. Chem. Phys. 15 16220
22 Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y and Dai Y 2012 ACS Appl. Mater. Interfaces 4 4024
23 Paudel T R and Lambrecht W R L 2008 Phys. Rev. B 77 205202
24 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
25 Blöchl P E 1994 Phys. Rev. B 50 17953
26 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
27 Desgreniers S 1998 Phys. Rev. B 58 14102
28 Decremps F, Datchi F, Saitta A M and Polian A 2003 Phys. Rev. B 68 104101
29 Kohn W and Sham L J1965 Phys. Rev. 140 A1133
30 Wròbel J, Kurzyd\lowski K J, Hummer K, Kresse G and Piechota J 2009 Phys. Rev. B 80 155124
31 Lany S and Zunger A 2010 Phys. Rev. B 81 113201
32 Erhart P, Albe K and Klein A 2006 Phys. Rev. B 73 205203
33 Ma X G, Wu Y, Lv Y H and Zhu Y F 2013 J. Phys. Chem. C 117 26029
34 Xua Z C, Hou Q Y, Guo F, Jia X F, Li C and Li W L 2018 Curr. Appl. Phys. 18 1465
35 Janotti A and Walle C G V 2007 Phys. Rev. B 76 165202
36 Göpel W, Pollmann J, Ivanov I and Reihl B 1982 Phys. Rev. B 26 3144
37 Bechambi O, Sayadi S and Najjar W 2015 J. Ind. Eng. Chem. 32 201
[1] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[2] Structural, electronic, and optical properties of hexagonal and triangular SiC NWs with different diameters
Yan-Jing Li(李彦景), Ya-Lin Li(李亚林), Shu-Long Li(李树龙), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2017, 26(4): 047309.
[3] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[4] First-principles calculations of structure and elasticity of hydrous fayalite under high pressure
Chuan-Yu Zhang(张传瑜), Xu-Ben Wang(王绪本), Xiao-Feng Zhao(赵晓凤), Xing-Run Chen(陈星润), You Yu(虞游), Xiao-Feng Tian(田晓峰). Chin. Phys. B, 2017, 26(12): 126103.
[5] Comparative study on beryllium and magnesium as a co-doping element for ZnO:N
Yu-Quan Su(苏宇泉), Ming-Ming Chen(陈明明), Long-Xing Su(苏龙兴), Yuan Zhu(祝渊), Zi-Kang Tang(汤子康). Chin. Phys. B, 2016, 25(6): 066106.
[6] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[7] Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes
Yu Xiao-Xia, Zhou Yan, Liu Jia, Jin Hai-Bo, Fang Xiao-Yong, Cao Mao-Sheng. Chin. Phys. B, 2015, 24(12): 127307.
[8] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye, Xu Run, Xu Hai-Tao, Hong Feng, Xu Fei, Wang Lin-Jun. Chin. Phys. B, 2015, 24(11): 116302.
[9] Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube
Zheng Hong-Mei, Fang Xiao-Yong, Cai Li-Xia, Yin Ai-Cha, Jin Hai-Bo, Yu Xiao-Xia, Cao Mao-Sheng. Chin. Phys. B, 2014, 23(12): 126102.
[10] First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model
Wu Qiong, Li Shu-Suo, Ma Yue, Gong Sheng-Kai. Chin. Phys. B, 2012, 21(10): 109102.
No Suggested Reading articles found!