Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046101    DOI: 10.1088/1674-1056/abcf94
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ground-state structure and physical properties of YB 3 predicted from first-principles calculations

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华)
1 School of Physics and Opto-Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  Using the calypso algorithm with first-principles calculations, we have predicted two orthorhombic Cmmm and Pmmm structures for YB3. The new structures are energetically much better than the previously proposed WB3-type, ReB3-type, FeB3-type, and TcP3-type structures. We find that the Cmmm phase transforms to the Pmmm phase at about 31 GPa. Subsequent calculations show that the Cmmm phase is mechanical and dynamical stable at ambient conditions. The analysis of the chemical bonding properties indicates that there are strong B-B bonds that make considerable contributions to its stability.
Keywords:  first-principles      high pressures      convex hull  
Received:  22 October 2020      Revised:  16 November 2020      Accepted manuscript online:  02 December 2020
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704170 and 61705097) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AP02, ZR2016EMP01, and ZR2019MA066).
Corresponding Authors:  Corresponding author. E-mail: chubinhua0125@126.com   

Cite this article: 

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华) Ground-state structure and physical properties of YB 3 predicted from first-principles calculations 2021 Chin. Phys. B 30 046101

1 Haines J, Leger J and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
2 Veprek S 2013 J. Vac. Sci. Technol. A 31 050822
3 Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
4 Brazhkin V V, Lyapin A G and Hemley R J 2002 Philos. Mag. A 82 231
5 Levine J B, Tolbert S H and Kaner R B 2010 Adv. Funct. Mater. 19 3519
6 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
7 Occelli F, Loubeyre P and LeToullec R 2003 Nat. Mater. 2 151
8 Zheng J C 2005 Phys. Rev. B 72 052105
9 Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
10 Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
11 Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
12 Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
13 Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
14 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett. 110 136403
15 Lu C, Li Q, Ma Y M and Chen C F 2017 Phys. Rev. Lett. 119 115503
16 Tse J S, Klug D D, Uehara K and Li Z Q 2000 Phys. Rev. B 61 10029
17 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2015 Phys. Rev. Lett. 115 185502
18 Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540
19 Niu H Y, Wang J Q, Chen X Q, Li D Z and Kolmogorov A N 2012 Phys. Rev. B 85 144116
20 Li B, Sun H and Chen C F 2014 Phys. Rev. B 90 014106
21 Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
22 Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293
23 Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118
24 Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc. 134 20660
25 Wang S, Yu X, Zhang J, Zhang Y, Wang L, Leinenweber K, Xu H, Popov D, Park C, Yang W, He D and Zhao Y 2014 J. Superhard Mater. 36 279
26 Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem. 638 1608
27 Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684
28 Zhang M, Lu M C, Du Y H, Gao L L, Lu C and Liu H Y 2014 J. Chem. Phys. 140 174505
29 Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Kon\opkovà Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108
30 Wu L, Wan B, Zhao Y, Zhang Y, Liu H, Wang Y, Zhang J and Gou H 2015 J. Phys. Chem. C 119 21649
31 Zhang G T, Gao R, Zhao Y R, Bai T T and Hu Y F 2017 J. Alloys Compd. 723 802
32 Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
33 Zhang X Z, Zhao E J and Wu Z J 2015 J. Alloys Compd. 632 37
34 Wei S L, Li D, Lv Y Z, Liu Z and Cui T 2016 Phys. Chem. Chem. Phys. 18 18074
35 Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722
36 Yan Q, Wang Y X, Wang B, Yang J M and Yang G 2015 RSC Adv. 5 25919
37 Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P and Huang X F 2013 J. Chem. Phys. 139 234503
38 Ying C, Bai X W, Du Y G, Zhao E J, Lin L and Hou Q Y 2016 Int. J. Mod. Phys. B 30 1650131
39 Ji Z W, Hu C H, Wang D H, Zhong Y, Yang J, Zhang W Q and Zhou H Y 2012 Acta Mater. 60 4208
40 Wang Y C, Yao T K, Wang L M, Yao J, Li H, Zhang J W and Gou H Y 2013 Dalton Trans. 42 7041
41 Huang L H, Zhao Y R, Zhang G T, Zhang M G, Li P Y and Hu Y F 2019 Mol. Phys. 117 547
42 Bai T T, Zhang G T, Zhao Y R, Chen L, Mu B X, Han Y F and Wei Q 2019 Mol. Phys. 118 e1603411
43 Zhang X Y, Qin J Q, Sun X W, Xue Y N, Ma M Z and Liu R P 2013 Phys. Chem. Chem. Phys. 15 20894
44 Zhang G T, Bai T T, Zhao Y R and Hu Y F 2016 Materials 9 703
45 Jaeger B, Paluch S, Wolf W, Herzig P, Zogal O J, Shitsevalova N and Paderno Y 2005 J. Alloys Compd. 383 232
46 Waskowska A, Gerward L, Olsen J S, Babu K R, Vaitheeswaran G, Kanchana V, Svane A, Filipov V B, Levchenko G and Lyaschenko A 2011 Acta Materialia 59 4886
47 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
48 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
49 Wang Y C, Lv J, Zhu L, Lu S, Yin K T, Li Q, Wang H, Zhang L J and Ma Y M 2015 J. Phys.: Condens. Matter 27 203203
50 Kresse G and Hafner J 1993 Phys. Rev. B 47 558
51 Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
52 Kresse G and J F 1996 J. Phys. Rev. B 54 11169
53 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
54 Kresse G and J F 1996 Phys. Rev. B 54 11169
55 Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100
56 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
57 Togo A and Tanaka I 2015 Scr. Mater. 108 1
58 Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
59 Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B 83 220102
60 Pugh S F 1954 Philos. Mag. 45 823
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[3] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[4] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[5] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[6] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[7] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[8] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[9] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[10] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[11] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[12] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[13] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[14] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[15] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
No Suggested Reading articles found!