Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046101    DOI: 10.1088/1674-1056/abcf94
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ground-state structure and physical properties of YB 3 predicted from first-principles calculations

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华)
1 School of Physics and Opto-Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  Using the calypso algorithm with first-principles calculations, we have predicted two orthorhombic Cmmm and Pmmm structures for YB3. The new structures are energetically much better than the previously proposed WB3-type, ReB3-type, FeB3-type, and TcP3-type structures. We find that the Cmmm phase transforms to the Pmmm phase at about 31 GPa. Subsequent calculations show that the Cmmm phase is mechanical and dynamical stable at ambient conditions. The analysis of the chemical bonding properties indicates that there are strong B-B bonds that make considerable contributions to its stability.
Keywords:  first-principles      high pressures      convex hull  
Received:  22 October 2020      Revised:  16 November 2020      Accepted manuscript online:  02 December 2020
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704170 and 61705097) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AP02, ZR2016EMP01, and ZR2019MA066).
Corresponding Authors:  Corresponding author. E-mail: chubinhua0125@126.com   

Cite this article: 

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华) Ground-state structure and physical properties of YB 3 predicted from first-principles calculations 2021 Chin. Phys. B 30 046101

1 Haines J, Leger J and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
2 Veprek S 2013 J. Vac. Sci. Technol. A 31 050822
3 Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
4 Brazhkin V V, Lyapin A G and Hemley R J 2002 Philos. Mag. A 82 231
5 Levine J B, Tolbert S H and Kaner R B 2010 Adv. Funct. Mater. 19 3519
6 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
7 Occelli F, Loubeyre P and LeToullec R 2003 Nat. Mater. 2 151
8 Zheng J C 2005 Phys. Rev. B 72 052105
9 Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
10 Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
11 Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
12 Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
13 Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
14 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett. 110 136403
15 Lu C, Li Q, Ma Y M and Chen C F 2017 Phys. Rev. Lett. 119 115503
16 Tse J S, Klug D D, Uehara K and Li Z Q 2000 Phys. Rev. B 61 10029
17 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2015 Phys. Rev. Lett. 115 185502
18 Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540
19 Niu H Y, Wang J Q, Chen X Q, Li D Z and Kolmogorov A N 2012 Phys. Rev. B 85 144116
20 Li B, Sun H and Chen C F 2014 Phys. Rev. B 90 014106
21 Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
22 Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293
23 Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118
24 Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc. 134 20660
25 Wang S, Yu X, Zhang J, Zhang Y, Wang L, Leinenweber K, Xu H, Popov D, Park C, Yang W, He D and Zhao Y 2014 J. Superhard Mater. 36 279
26 Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem. 638 1608
27 Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684
28 Zhang M, Lu M C, Du Y H, Gao L L, Lu C and Liu H Y 2014 J. Chem. Phys. 140 174505
29 Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Kon\opkovà Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108
30 Wu L, Wan B, Zhao Y, Zhang Y, Liu H, Wang Y, Zhang J and Gou H 2015 J. Phys. Chem. C 119 21649
31 Zhang G T, Gao R, Zhao Y R, Bai T T and Hu Y F 2017 J. Alloys Compd. 723 802
32 Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
33 Zhang X Z, Zhao E J and Wu Z J 2015 J. Alloys Compd. 632 37
34 Wei S L, Li D, Lv Y Z, Liu Z and Cui T 2016 Phys. Chem. Chem. Phys. 18 18074
35 Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722
36 Yan Q, Wang Y X, Wang B, Yang J M and Yang G 2015 RSC Adv. 5 25919
37 Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P and Huang X F 2013 J. Chem. Phys. 139 234503
38 Ying C, Bai X W, Du Y G, Zhao E J, Lin L and Hou Q Y 2016 Int. J. Mod. Phys. B 30 1650131
39 Ji Z W, Hu C H, Wang D H, Zhong Y, Yang J, Zhang W Q and Zhou H Y 2012 Acta Mater. 60 4208
40 Wang Y C, Yao T K, Wang L M, Yao J, Li H, Zhang J W and Gou H Y 2013 Dalton Trans. 42 7041
41 Huang L H, Zhao Y R, Zhang G T, Zhang M G, Li P Y and Hu Y F 2019 Mol. Phys. 117 547
42 Bai T T, Zhang G T, Zhao Y R, Chen L, Mu B X, Han Y F and Wei Q 2019 Mol. Phys. 118 e1603411
43 Zhang X Y, Qin J Q, Sun X W, Xue Y N, Ma M Z and Liu R P 2013 Phys. Chem. Chem. Phys. 15 20894
44 Zhang G T, Bai T T, Zhao Y R and Hu Y F 2016 Materials 9 703
45 Jaeger B, Paluch S, Wolf W, Herzig P, Zogal O J, Shitsevalova N and Paderno Y 2005 J. Alloys Compd. 383 232
46 Waskowska A, Gerward L, Olsen J S, Babu K R, Vaitheeswaran G, Kanchana V, Svane A, Filipov V B, Levchenko G and Lyaschenko A 2011 Acta Materialia 59 4886
47 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
48 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
49 Wang Y C, Lv J, Zhu L, Lu S, Yin K T, Li Q, Wang H, Zhang L J and Ma Y M 2015 J. Phys.: Condens. Matter 27 203203
50 Kresse G and Hafner J 1993 Phys. Rev. B 47 558
51 Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
52 Kresse G and J F 1996 J. Phys. Rev. B 54 11169
53 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
54 Kresse G and J F 1996 Phys. Rev. B 54 11169
55 Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100
56 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
57 Togo A and Tanaka I 2015 Scr. Mater. 108 1
58 Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
59 Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B 83 220102
60 Pugh S F 1954 Philos. Mag. 45 823
[1] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[2] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[3] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[4] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[5] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[6] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[7] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[8] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[9] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[10] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[11] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[12] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[13] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[14] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[15] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[1] Zhao He-ping, Liu Zheng-you, Liu You-yan. ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS[J]. Chin. Phys., 2001, 10(1): 35 -39 .
[2] Dong Shun-le, Li Qi, Wang Yan. NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (I)[J]. Chin. Phys., 2001, 10(10): 951 -957 .
[3] T. K. Kwok, P. K. Chu, Zhang Tao, I. G. Brown. THE INFLUENCE OF ELECTRON OSCILLATION ON PLASMA TRANSPORT THROUGH A MAGNETIC DUCT[J]. Chin. Phys., 2001, 10(4): 320 -323 .
[4] Pan Wei-Yan, Li Kai. Dyadic Green's function for an unbounded gyroelectric chiral medium in cylindrical coordinates[J]. Chin. Phys., 2002, 11(12): 1245 -1248 .
[5] Xiao Jian, Wang Zhong-Yang, Xu Zhi-Zhan. Carrier shock and frequency conversion of a few-cycle pulse laser propagating in a non-resonant two-level atom medium[J]. Chin. Phys., 2002, 11(12): 1276 -1279 .
[6] Wei En-Bo, Tian Ji-Wei, Song Jin-Bao. A theory of nonlinear AC response in coated composites[J]. Chin. Phys., 2004, 13(3): 388 -392 .
[7] Sheng Yue-Biao, Li Jing, Ma Bao-Liang, Wang Wei. Functional structures and folding dynamics of two peptides[J]. Chin. Phys., 2005, 14(11): 2365 -2369 .
[8] Kou Zhi-Qi, Di Nai-Li, Lu Yi, Ma Xiao, Li Qing-An, Cheng Zhao-Hua. Local structural distortion and magnetotransport properties of Nd0.5Pb0.5-xSrx (Mn, Fe)O3[J]. Chin. Phys., 2005, 14(2): 311 -316 .
[9] Gao Tie-Gang, Chen Zeng-Qiang, Chen Guan-Rong, Yuan Zhu-Zhi. Finite-time control of chaotic systems with nonlinear inputs[J]. Chin. Phys., 2006, 15(6): 1190 -1195 .
[10] Li Zhi-Gang, Long Shi-Bing, Liu Ming, Wang Cong-Shun, Jia Rui, Lv Jin, Shi Yi. Charge storage characteristics of hydrogenated nanocrystalline silicon film prepared by rapid thermal annealing[J]. Chin. Phys., 2007, 16(3): 795 -798 .