Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047104    DOI: 10.1088/1674-1056/abe3f7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release

Xin Gao(高鑫)1, Yunliang Yue(乐云亮)2, Yang Liu(刘杨)3,4, and Xu Zuo(左旭)1,5,6,†
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;  2 School of Information Engineering, Yangzhou University, Yangzhou 225127, China;  3 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;  4 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;  5 Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;  6 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, China
Abstract  The first-principles calculations based on density functional theory are performed to study F-, Cl-, and N-related defects of amorphous SiO2 (a-SiO2) and their impacts on carrier trapping and proton release. The possible geometric configurations of the impurity-related defects, the formation energies, the hole or electron trapping of the neutral defects, and the mechanisms to suppress proton diffusion by doping N are investigated. It is demonstrated by the calculations that the impurity atoms can interact with the oxygen vacancies and result in impurity-related defects. The reactions can be utilized to saturate oxygen vacancies that will cause ionization damage to the semiconducting devices. Moreover, the calculated formation energy indicates that the F-or Cl-related oxygen vacancy defect is a deep hole trap, which can trap holes and prevent them from diffusing to the a-SiO2/Si interface. However, three N-related defects, namely N(2)o-H, N(2)o=O, and N(3)o-V o, tend to act as shallow hole traps to facilitate hole transportation during device operation. The N(2)o and N(3)o configurations can be negatively charged as deep electron traps during the oxide charge buildup after ionization radiation. In addition, the nudged elastic band (NEB) calculations show that four N-related defects, namely N(2)o, N(2)o-H, N(2)o=O, and N(3)o are capable of capturing protons and preventing them from diffusing to and de-passivating the interface. This research reveals the fundamental properties of the F-, Cl-, and N-related defects in amorphous silica and the details of the reactions of the carrier trapping and proton release. The findings help to understand the microscopic mechanisms that alleviate ionization damage of semiconducting devices by doping a-SiO2.
Keywords:  first-principles calculation      doping      defect      proton  
Received:  30 December 2020      Revised:  03 February 2021      Accepted manuscript online:  08 February 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAEPMT201501), the National Basic Research Program of China (Grant No. 2011CB606405), and Tianjin Natural Science Foundation, China (Grant No. 20JCZDJC00750).
Corresponding Authors:  Corresponding author. E-mail: xzuo@nankai.edu.cn   

Cite this article: 

Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭) First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release 2021 Chin. Phys. B 30 047104

1 Schwank J R, Shaneyfelt M R, Fleetwood D, et al. 2008 IEEE Trans Nucl Sci. 55 1833
2 Bongiorno A and Pasquarello A 2004 Phys. Rev. B 70 195312
3 Deal B E and Grove A S 1965 J. Appl. Phys. 36 3770
4 Ganster P, Tréglia G and Saùl A 2010 Phys. Rev. B. 81 045315
5 Huang S P, Zhang R Q, Li H S, et al. \hrefhttps://doi.org/10.1021/jp903932s 2009 J. Phys. Chem. C 113 12736
6 Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M and Pantelides S T 2010 IEEE Trans. Nucl. Sci. 57 3046
7 Yue Y, Song Y and Zuo X 2018 Chin. Phys. B. 27 037102
8 Rowsey N L, Law M E, Schrimpf R D, et al 2011 IEEE Trans. Nucl. Sci. 58 2937
9 Yokozawa A and Miyamoto Y 1998 Appl. Phys. Lett. 73 1122
10 Tan S S, Chen T P, Soon J M, Loh K P, Ang C H, Teo W Y and Chan L 2003 Appl. Phys. Lett. 83 530
11 Schmidt P F, Rand M J, Mitchell J P and Ashner J D 1969 IEEE Trans. Nucl. Sci. 16 211
12 Jeong S and Oshiyama A 2001 Phys. Rev. Lett. 86 3574
13 Orellana W, da Silva A J R and Fazzio A 2004 Phys. Rev. B 70 125206
14 El-Sayed A M, Watkins M B, Afanas'ev V V, et al 2014 Phys. Rev. B 89 125201
15 Van de Walle and C G Neugebauer J 2004 J. Appl. Phys. 95 3851
16 Freysoldt C, Neugebauer J and Walle C G V D 2009 Phys. Rev. Lett. 102 016402
17 Tamura T, Lu G H, Yamamoto R, et al. \hrefhttps://doi.org/10.1103/PhysRevB.69.195204 2004 Phys. Rev. B 69 195204
18 Jeong S and Oshiyama A 2001 Physica B 308 999
19 Lee E C and Chang K J 2002 Phys. Rev. B 66 233205
20 Ono H, Ikarashi T, Miura Y, Hasegawa E, Ando K, Kitano T 1999 Appl. Phys. Lett. 74 203
21 Bhat M, Yoon G W, Kim J, Kwong D L, Arendt M and White J M 1994 Appl. Phys. Lett. 64 2116
22 Hegde R I, Tobin P J, Reid K G, Maiti B and Ajuria S A 1995 Appl. Phys. Lett. 66 2882
23 Carr E C and Buhrman R A 1993 Appl. Phys. Lett. 63 54
24 Tan S S, Chen T P, Soon J M, Loh K P, Ang C H, Teo W Y and Chan L 2003 Appl. Phys. Lett. 83 530
25 Godet J and Pasquarello A 2006 Phys. Rev. Lett. 97 155901
26 Rasnkeev S N, Fleetwood D M, SchrimpfF R D, et al.2004 IEEE Trans. Nucl. Sci. 51 3158
27 Chen X J, Barnaby H J, VermeireERME B, et al.2007 IEEE Trans. Nucl. Sci. 54 1913
[1] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[2] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[3] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[4] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[5] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[6] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[7] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[8] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[9] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[10] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[11] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[12] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[13] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[14] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[15] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[1] MANFRED FINK, TIAN REN-HE. THE BEAM TEMPERATURE AND ENERGY BROADENING OF A CHARGED-PARTICLE BEAM IN AN AXIALLY SYMMETRIC MAGNETIC FIELD[J]. Acta Phys. Sin. (Overseas Edition), 1992, 1(2): 86 -93 .
[2] LUO ZHEN-FEI, XU ZHI-ZHAN, ZHOU JIAO-YANG. ATOMIC-COHERENCE-INDUCED ENHANCEMENT OF REFRACTIVE INDEX[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(4): 252 -259 .
[3] SHI JUN-JIE. ELECTRON-INTERFACE PHONON SCATTERING IN ASYMMETRIC SEMICONDUCTOR QUANTUM WELL STRUCTURES[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(5): 356 -364 .
[4] LI YI-MIN, XIA HUI-RONG, WANG ZU-GENG, XU ZAI-XIN. SQUEEZED COHERENT THERMAL STATE AND ITS PHOTON NUMBER DISTRIBUTION[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(9): 681 -689 .
[5] Li Run-wei, Sun Ji-rong, Wang Zhi-hong, Chen Xin, Zhang Shao-ying, Shen Bao-gen. ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3[J]. Chin. Phys., 2000, 9(8): 630 -633 .
[6] Wang Xin, Lu Zu-hong, Deng Hui-hua, Yu Tsing, Mao Hai-fang, Suzuki Toshishige. SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA[J]. Chin. Phys., 2001, 10(13): 59 -64 .
[7] Li De-Sheng, Zhang Hong-Qing. The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin. Phys., 2004, 13(7): 984 -987 .
[8] Zheng Shi-Biao. Teleportation of atomic states with a weak coherent cavity field[J]. Chin. Phys., 2005, 14(9): 1825 -1827 .
[9] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[10] Sun Jian-Cheng, Zhou Ya-Tong, Luo Jian-Guo. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines[J]. Chin. Phys., 2006, 15(6): 1208 -1215 .