Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047101    DOI: 10.1088/1674-1056/abccb7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations

Wei Hu(胡伟)1, 2, 3, Ying Tian(田颖)1,2, Hong-Tao Xue(薛红涛)1,2, Wen-Sheng Li(李文生)1,2, and Fu-Ling Tang(汤富领)1,2,†
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; 3 Department of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
Abstract  The MAPbI3 (110) surface with low indices of crystal face is a stable and highly compatible photosensitive surface. Since the electronic states on the surface can be detrimental to the photovoltaic efficiency of the device, they should be passivated. Phenylethylamine (PEA+), as a molecular ligand, has been widely used in continuous degradation and interfacial charge recombination experiments, and has satisfactory performance in improving surface defects. Therefore, we construct an adsorption model of MAPbI3 with small molecules, calculating the lattice structure and electronic properties of PEA+-adsorbed MAPbI3 (110) surface. It is found that PEA+ as a passivator can effectively weaken the electronic states and regulate the band gap of the MAPbI3 (110) surface. Before and after adding the passivator, the peak value of electronic state densities at MAPbI3 (110) surface is reduced by about 50%, and the band gap is apparently reduced. Moreover, by comparing the Bader atomic charge and spatial charge distributions before and after PEA+'s adsorption on the surface of MAPbI3, we observe a substantial change of PEA+ charges, which suggests the surface states have been passivated by PEA+.
Keywords:  first-principles calculations      surface states      passivation  
Received:  06 October 2020      Revised:  10 November 2020      Accepted manuscript online:  23 November 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.A- (Ab initio calculations)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764027 and 51674130), the Scientific Research Projects of Higher Education in Gansu Province, China (Grant No. 2018A-126), and the Research Team Support Program of Lanzhou Institute of Technology (Grant Nos. 2018KW-11 and 2020KJ-01).
Corresponding Authors:  Corresponding author. E-mail: tfl@lut.edu.cn   

Cite this article: 

Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领) Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations 2021 Chin. Phys. B 30 047101

1 Luo L, Zhang Y, Chai N, Deng X, Zhong J, Huang F, Peng Y, Cheng Y B and Ku Z 2018 J. Mater. Chem. A 6 21143
2 Zhang L and Sit P H L 2016 RSC Adv. 6 76938
3 Wang S, Zhu Y, Wang C and Ma R 2019 J. Mater. Chem. A 7 11867
4 Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
5 Shi J, Xu X, Li D and Meng Q 2015 Small 11 2472
6 Graetzel M, Janssen R A, Mitzi D B and Sargent E H 2012 Nature 488 304
7 Ding S, Li S, Sun Q, Wu Y C, Liu Y, Li Z, Cui Y, Wang H, Hao Y and Wu Y 2019 J. Mater. Chem. C 7 5686
8 Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
9 Gao J, Shi S and Li H 2016 Chin. Phys. B 1 18210
10 Shi J, Xu X, Li D and Meng Q 2015 Small 11 2472
11 Gao F, Zhao Y, Zhang X and You J 2019 Adv. Energy Mater. 10 1902650
12 Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Mullerbuschschbaum P and Docampo P 2016 ACS Nano 10 5999
13 Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y and Yang S 2017 Adv. Energy Mater. 7 1701038
14 Yantara N, Yanan F, Shi C, Dewi H A, Boix P P, Mhaisalkar S G and Mathews N 2015 Chem. Mater. 27 2309
15 Koushik D, Verhees W, Kuang Y, Veenstra S, Zhang D, Verheijen M A, Creatore M and Schropp R E I 2017 Energy Environ. Sci. 10 91
16 Zhang F and Zhu K 2019 Adv. Energy Mater. 10 1902579
17 Kim M, Kim G, Lee T K, Choi I W, Choi H W, Jo Y, Yoo Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y and Kim D S 2019 Joule 3 2179
18 Abdijalebi M, Andajigarmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter, J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497
19 Lee D S, Yun J S, Kim J, Soufiani A M, Chen S, Cho Y, Deng J S, Lim S, Huang S and Hobaillie A 2018 ACS Energy Lett. 3 647
20 Li N, Zhu Z, Dong Q, Li J, Yang Z, Chueh C, Jen A K Y and Wang L 2017 Adv. Mater. Interfaces 4 1700598
21 Kim H, Lee Y H, Lyu T, Yoo J H and Oh J H 2018 J. Mater. Chem. A 6 18173
22 Zhang F, Huang Q, Song J, Zhang Y, Ding C, Liu F, Liu D, Li X, Yasuda H, Yoshida K, Qu J, Hayase S, Toyoda T, Minemoto T and Shen Q 2020 Solar RRL 4 1900243
23 Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
24 Xu C, Zhang Z, Hu Y, Sheng Y, Jiang P, Han H and Zhang J 2018 J. Energy Chem. 27 764
25 Lee K, Kim J, Yu H, Lee J W, Yoon C, Kim S K and Jang J 2018 J. Mater. Chem. A 6 24560
26 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
27 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
28 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
29 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
30 Wen Z, Zhao Y, Hou H, Wang N, Li F U and Han P 2014 T. Nonferr. Metal. Soc. 24 1500
31 Li D F, Zu X T, Xiao H Y and Liu K Z 2009 J. Alloy. Compd. 467 557
32 Wang C, Gao H, Dai Y, Ruan X, Shen J, Wang J and Sun B 2010 J. Alloy. Compd. 490 L9
[1] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[2] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[3] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[4] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[5] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[6] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[7] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[8] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[9] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[10] Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春). Chin. Phys. B, 2021, 30(11): 117105.
[11] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[12] Band engineering of honeycomb monolayer CuSe via atomic modification
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(10): 106807.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[15] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[1] Zhao He-ping, Liu Zheng-you, Liu You-yan. ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS[J]. Chin. Phys., 2001, 10(1): 35 -39 .
[2] Dong Shun-le, Li Qi, Wang Yan. NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (I)[J]. Chin. Phys., 2001, 10(10): 951 -957 .
[3] T. K. Kwok, P. K. Chu, Zhang Tao, I. G. Brown. THE INFLUENCE OF ELECTRON OSCILLATION ON PLASMA TRANSPORT THROUGH A MAGNETIC DUCT[J]. Chin. Phys., 2001, 10(4): 320 -323 .
[4] Xiao Jian, Wang Zhong-Yang, Xu Zhi-Zhan. Carrier shock and frequency conversion of a few-cycle pulse laser propagating in a non-resonant two-level atom medium[J]. Chin. Phys., 2002, 11(12): 1276 -1279 .
[5] Wei En-Bo, Tian Ji-Wei, Song Jin-Bao. A theory of nonlinear AC response in coated composites[J]. Chin. Phys., 2004, 13(3): 388 -392 .
[6] Sheng Yue-Biao, Li Jing, Ma Bao-Liang, Wang Wei. Functional structures and folding dynamics of two peptides[J]. Chin. Phys., 2005, 14(11): 2365 -2369 .
[7] Kou Zhi-Qi, Di Nai-Li, Lu Yi, Ma Xiao, Li Qing-An, Cheng Zhao-Hua. Local structural distortion and magnetotransport properties of Nd0.5Pb0.5-xSrx (Mn, Fe)O3[J]. Chin. Phys., 2005, 14(2): 311 -316 .
[8] Gao Tie-Gang, Chen Zeng-Qiang, Chen Guan-Rong, Yuan Zhu-Zhi. Finite-time control of chaotic systems with nonlinear inputs[J]. Chin. Phys., 2006, 15(6): 1190 -1195 .
[9] Li Zhi-Gang, Long Shi-Bing, Liu Ming, Wang Cong-Shun, Jia Rui, Lv Jin, Shi Yi. Charge storage characteristics of hydrogenated nanocrystalline silicon film prepared by rapid thermal annealing[J]. Chin. Phys., 2007, 16(3): 795 -798 .
[10] Jiang Zhou-Ting, Zhang Lin-Xi, Sun Ting-Ting, Wu Tai-Quan. Statistical interior properties of globular proteins[J]. Chin. Phys. B, 2009, 18(10): 4580 -4590 .