Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107202    DOI: 10.1088/1674-1056/22/10/107202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A shortcut for determining growth mode

R. A. Rehmana b, Cai Yi-Liang (蔡亦良)a, Zhang Han-Jie (张寒洁)a, Wu Ke (吴珂)a, Dou Wei-Dong (窦卫东)a, Li Hai-Yang (李海洋)a, He Pi-Mo (何丕模)a, Bao Shi-Ning (鲍世宁)a
a Physics Department, Zhejiang University, Hangzhou 310027, China;
b Physics Department, Forman Christian College University, Lahore 54600, Pakistan
Abstract  Thin and thick films of iron phthalocyanine (FePc) molecules are deposited on a Ag (110) surface. The nature of the FePc growth and the interaction with the substrate have been studied by X-ray photoelectron spectroscopy (XPS). All of the core level spectra exhibit rigid shifts towards lower binding energies following the deposition of the organic films, each by a different magnitude. A greater change and a larger shift in the Fe2p level as compared to C1s core level reveals that the adsorbate interacts with the substrate mainly via the Fe atom, located at the center of the molecule. An increase/decrease in the intensity of C1s/Ag3d level is found to be exponentially linked to the overlayer molecular coverage. Finally, the so-called growth/decay curve indicates that FePc thin films initially develop following the FM growth mode and then transform to SK mode, resulting in 3D island aggregation.
Keywords:  iron phthalocyanine      silver      growth modes      X-ray photoelectron spectroscopy  
Received:  07 February 2013      Revised:  26 April 2013      Accepted manuscript online: 
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
  42.70.Jk (Polymers and organics)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10974172, 10774129, and 61106131) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  R. A. Rehman     E-mail:  ateeq215@gmail.com

Cite this article: 

R. A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁) A shortcut for determining growth mode 2013 Chin. Phys. B 22 107202

[1] Ma J, Wang J and Liu Y 2007 J. Power Sources 172 220
[2] Chen Y H and Lin B R 2011 Cambridge J. Online 46 1270
[3] Heutz S, Mitra C, Wu W, Fisher A J, Kerridge A, Stoneham M, Harker T H, Gardener J, Tseng H H, Jones T S, Renner C and Aeppli G 2007 Adv. Mater. 19 3618
[4] Naber W J M, Faez S and van der Wiel W G 2007 J. Phys. D: Appl. Phys. 40 0022
[5] Moon H K, Son M, Park J F, Yoon S M, Lee S H and Choi H C 2012 NPG Asia Materials 4 1
[6] Kroll T, Kraus R, Schönfelder R, Aristov V Yu, Molodtsova O V, Hoffmann P and Knupfer M 2012 J. Chem. Phys. 137 054306
[7] Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou J G and Zhu Q 2005 Science 309 1542
[8] Braun S, Salaneck W R and Fahlman M 2009 Adv. Mater. 21 1450
[9] Palmgren P, Priya B R, Niraj N P P and Gothelid M 2006 J. Phys.: Condens. Matter 18 10707
[10] Ahlund J, Schnadt J, Nilson K, Göthelid E, Schiessling J, Besenbacher F, Martensson N and Puglia C 2007 Surf. Sci. 601 3661
[11] Casarin M, Marino M Di, Forrer D, Sambi M, Sedona F, Tondello E, Vittadini A, Barone V and Pavone M 2010 J. Phys. Chem. C 114 2144
[12] Fortuna S, Gargiani P, Betti M G, Mariani C, Calzolari A, Modesti S and Fabris S 2012 J. Phys. Chem. C 116 6251
[13] Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L and Mariani C 2010 J. Phys. Chem. 114 21638
[14] Palmgren P, Angot T, Nlebedim C I, Layet J M, Le Lay G and Göthelid M 2008 J. Chem. Phys. 128 064702
[15] Petraki F, Peisert H, Aygu I U, Latteyer F, Uihlein J, Vollmer A and Chasse T 2012 J. Phys. Chem. C 116 11110
[16] Takami T, Carrizales C and Hipps K W 2009 Surf. Sci. 603 3201
[17] Qian H Q, Jiang L, Rehman A, Zhang H J, Li H Y, He P and Bao S N 2012 Chem. Phys. Lett. 537 53
[18] Lin H C, Polaske N W, Oquendo L E, Gliboff M, Knesting K M, Nordlund D, Ginger D S, Ratcliff E L, Beam B M, Armstrong N R, McGrath D V and Savedra S S 2012 J. Phys. Chem. Lett. 3 1154
[19] Lu B, Zhang H J, Li H Y, Bao S N and He P 2003 Phys. Rev. B 68 125410
[20] Seah M P and Dench W A 1979 Surf. Interf. Anal. 1 2
[21] Shirley D A 1972 Phys. Rev. B 5 4709
[22] Vickerman J C and Gilmore I S 2009 Surface Analysis – The Principal Techniques, 2nd edn. (John Wiley and Sons, Ltd.)
[23] Rajput R K 2006 Utilization of Electrical Power (New Delhi Laxmi Publications Ltd.)
[24] Tanuma S, Powell C J and Penn D R 1991 Surf. Interf. Anal. 17 911
[25] Jablonski A and Powell C J 1999 J. Electron Spectr. Relat. Phenom. 100 137
[26] Wu H F, Zhang H J, Lu Y H, Si J X, Li H Y, Bao S N, Wu H Z and He P 2008 Appl. Phys. Lett. 92 122112
[27] Schmid M, Kaftan A, Steinrück H P and Gottfried J M 2012 Surf. Sci. 606 945
[28] Rehman R A, Zhang H J, Qian H Q, Dan J, Dou W D, Li H Y, He P and Bao S N 2012 Physica E 44 1572
[29] Palmgren P, Nilson K, Yu S, Hennies F, Angot T, Nlebedim C I, Layet J M, Lay G L and Gothelid M 2008 J. Phys. Chem. C 112 5972
[30] Isvoranu C, Åhlund J, Wang B, Ataman E, Mårtensson N, Puglia C, Andersen J N, Bocquet M L and Schnadt J 2009 J. Chem. Phys. 131 214709
[31] Petraki F, Papaefthimiou V and Kennou S 2007 Org. Electron. 8 522
[32] Ellis T S, Park K T, Ulrich M D, Hulbert S L and Rowe J E 2006 J. Appl. Phys. 100 093515
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[3] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[4] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[5] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[6] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[7] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[8] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[9] Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires
Xia Guo(郭霞), Qiao-Li Liu(刘巧莉), Hui-Jun Tian(田慧军), Chun-Wei Guo(郭春威), Chong Li(李冲), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Hua Wu(武华). Chin. Phys. B, 2018, 27(9): 098502.
[10] Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure
Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财). Chin. Phys. B, 2018, 27(4): 047301.
[11] Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇). Chin. Phys. B, 2018, 27(11): 113101.
[12] Surface plasmon polariton nanolasers: Coherent light sources for new applications
Yu-Hsun Chou(周昱薰), Chia-Jui Chang(張家睿), Tzy-Rong Lin(林資榕), Tien-Chang Lu(盧廷昌). Chin. Phys. B, 2018, 27(11): 114208.
[13] Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol
Song He(何松), Xiang Zhang(张祥), Bingchu Yang(杨兵初), Xiaomei Xu(徐晓梅), Hui Chen(陈辉), Conghua Zhou(周聪华). Chin. Phys. B, 2017, 26(7): 078103.
[14] Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华). Chin. Phys. B, 2017, 26(5): 058401.
[15] High-temperature thermodynamics of silver:Semi-empirical approach
R H Joshi, B Y Thakore, P R Vyas, A R Jani, N K Bhatt. Chin. Phys. B, 2017, 26(11): 116502.
No Suggested Reading articles found!