Special Issue:
TOPICAL REVIEW — Nanolasers
|
|
|
Surface plasmon polariton nanolasers: Coherent light sources for new applications |
Yu-Hsun Chou(周昱薰)1, Chia-Jui Chang(張家睿)2, Tzy-Rong Lin(林資榕)3,4, Tien-Chang Lu(盧廷昌)2 |
1 Physics Department, University of Michigan, 450 Church Street, Ann Arbor, MI 481092-122, USA;
2 Department of Photonics, “National” Chiao Tung University, Hsinchu 300, Taiwan, China;
3 Department of Mechanical and Mechatronic Engineering, “National” Taiwan Ocean University, Keelung 20224, Taiwan, China;
4 Center of Excellence for Ocean Engineering, “National” Taiwan Ocean University, Keelung 20224, Taiwan, China |
|
|
Abstract The invention of the Internet and mobile devices has caused tremendous changes in human lives over the past two decades. Information technology has broken through limitations of geospatial space, enabling extremely high-speed data transmission and new types of data services. In recent years, demands for data processing have shown an increasing trend. Furthermore, data generated from internet-related applications such as cloud services and self-driving technology are likely to grow exponentially over the coming years. Currently, data transmission inside integrated circuits mainly relies on metal wires. However, the substantial resistive-capacitive delay and energy loss that are caused by metal wires limit data transmission speeds. Optical interconnection has been regarded as a major solution to efficiently reduce energy consumption and increase data transmission speeds. The size of conventional semiconductor laser devices, which are the key component in optical interconnection, cannot be smaller than the wavelength of light, which is a fundamental physical obstacle to lasers integrating with current electronic integrated circuits in reasonable volumes. To realize optical interconnection, the volume of the laser device must match the existing electronic components. Recently, the use of diffraction-unlimited plasmonic lasers has been successfully demonstrated, and these have great potential in different applications. In this paper, we discuss the recent progress toward surface plasmon polariton lasers and provide practical insights into the challenges in realizing these novel devices.
|
Received: 28 February 2018
Revised: 15 June 2018
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
Fund: Project supported by Grant Nos. MOST 1042221E009096MY3, MOST 1042923E009003MY3, MOST 1032221E019028MY3, MOST 1062917I564021, and MOST 1052221E019049MY3. |
Corresponding Authors:
Tien-Chang Lu
E-mail: timtclu@mail.nctu.edu.tw
|
Cite this article:
Yu-Hsun Chou(周昱薰), Chia-Jui Chang(張家睿), Tzy-Rong Lin(林資榕), Tien-Chang Lu(盧廷昌) Surface plasmon polariton nanolasers: Coherent light sources for new applications 2018 Chin. Phys. B 27 114208
|
[1] |
Maiman T H 1960 Nature 187 493
|
[2] |
Hall R N, Fenner G E, Kingsley J D, Soltys T J and Carlson R O 1962 Phys. Rev. Lett. 9 366
|
[3] |
Okuda H, Soda H, Moriki K, Motegi Y and Iga K 1979 Jpn. J. Appl. Phys. 18 2393
|
[4] |
Albert F, Braun T, Heindel T, Schneider C, Reitzensteina S, Höfling S, Worschech L and Forchel A 2010 Appl. Phys. Lett. 97 101108
|
[5] |
Sandoghdar V, Treussart F, Hare J, Lefévre-Seguin V, Raimond J M and Haroche S 1996 Phys. Rev. A 54 R1777
|
[6] |
Noda S 2006 Science 314 260
|
[7] |
Eaton S W, Fu A, Wong A B, Ning C Z and Yang P 2016 Nat. Rev. Mater. 1 16028
|
[8] |
Hill M T, Oei Y S, Smalbrugge B, Zhu Y, DeVries T, Van Veldhoven P J, Van Otten F W M, Eijkemans T J, Turkiewicz J P and De Waardt H 2007 Nat. Photon. 1 589
|
[9] |
Nezhad M P, Simic A, Bondarenko O, Slutsky B, Mizrahi A, Feng L A, Lomakin V and Fainman Y 2010 Nat. Photon. 4 395
|
[10] |
Ding K, Liu Z C, Yin L J, Hill M T, Marell M J H, van Veldhoven P J, Noetzel R and Ning C Z 2012 Phys. Rev. B 85 041301
|
[11] |
Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V and Fainman Y 2012 Nature 482 204
|
[12] |
Yu K, Lakhani A and Wu M C 2010 Opt. Express 18 8790
|
[13] |
Ding K, Hill M T, Liu Z C, Yin L J, van Veldhoven P J and Ning C Z 2013 Opt. Express 21 4728
|
[14] |
Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
|
[15] |
Stockman M I 2008 Nat. Photon. 2 327
|
[16] |
Stockman M I 2010 J. Opt. 12 024004
|
[17] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
|
[18] |
Premaratne M and Stockman M I 2016 Adv. Opt. Photon. 9 81
|
[19] |
Hill M T 2009 Opt. Express 17 11110
|
[20] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[21] |
Lu Y et al 2012 Science 337 450
|
[22] |
Lu Y J et al 2014 Nano Lett. 14 4381
|
[23] |
Purcell E M 1946 Phys. Rev. 69 681
|
[24] |
G'erard J, Sermage B, Gayral B, Legr, B, Costard E and Thierry-Mieg V 1998 Phys. Rev. Lett. 81 1110
|
[25] |
Gayral B, Gerard J M, Lematre A, Dupuis C, Manin L and Pelouard J L 1999 Appl. Phys. Lett. 75 1908
|
[26] |
Song B S, Noda S, Asano T and Akahane Y 2005 Nat. Mater. 4 207
|
[27] |
Vernooy D W, Ilchenko V S, Mabuchi H, Streed E W and Kimble H J 1998 Opt. Lett. 23 247
|
[28] |
Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
|
[29] |
Painter O, Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
|
[30] |
Park H G, Kim S H, Kwon S H, Ju Y G, Yang J K, Baek J H, Kim S B and Lee Y H 2004 Science 305 1444
|
[31] |
Altug H, Englund D and Vuckovic J 2006 Nat. Phys. 2 484
|
[32] |
Nozaki K, Kita S and Baba T 2007 Opt. Express 15 7506
|
[33] |
Tandaechanurat A, Ishida S, Guimard D, Nomura M, Iwamoto S and Arakawa Y 2011 Nat. Photon. 5 91
|
[34] |
Strauf S and Jahnke F 2011 Photon. Rev. 5 607
|
[35] |
Imada M, Noda S, Chutinan A and Tokuda T 1999 Appl. Phys. Lett. 75 316
|
[36] |
Imada M, Chutinan A, Noda S and Mochizuki M 2002 Phys. Rev. B 65 195306
|
[37] |
Lu T C, Chen S W, Lin L F, Kao T T, Kao C C, Yu P, Kuo H C, Wang S C and Fan S 2008 Appl. Phys. Lett. 92 011129
|
[38] |
Lu T C, Chen S W, Kao T T and Liu T W 2008 Appl. Phys. Lett. 93 111111
|
[39] |
Chen S W, Lu T C and Kao T T 2009 IEEE JSTQE 15 885
|
[40] |
Chen S W, Lu T C, Hou Y J, Liu T C, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 071108
|
[41] |
Weng P H, Wu T T, Lu T C and Wang S C 2011 Opt. Lett. 36 1908
|
[42] |
Pan C H, Lin C H, Chang T Y, Lu T C and Lee C P 2015 Opt. Express 23 11741
|
[43] |
Hong K B, Yang C C and Lu T C 2016 IEEE JQE 52 6400205
|
[44] |
Huang S C, Hong K B, Chiu H L, Lan S W, Chang T C, Li H and Lu T C 2018 Appl. Phys. Lett. 112 061105
|
[45] |
Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
|
[46] |
Dasgupta N P, Sun J W, Liu C, Brittman S, Andrews S C, Lim J, Gao H W, Yan R X and Yang P D 2014 Adv. Mater. 26 2137
|
[47] |
Maier S A 2006 Opt. Commun. 258 295
|
[48] |
Wood R W 1902 Philos. Mag. 4 396
|
[49] |
Fano U 1941 J. Opt. Soc. Am. 31 213
|
[50] |
Hessel A and Oliner A A 1965 Appl. Opt. 4 1275
|
[51] |
Ritchie R H 1957 Phys. Rev. 106 874
|
[52] |
Ritchie R H, Arakawa E T, Cowan J J and Hamm R N 1968 Phys. Rev. Lett. 21 1530
|
[53] |
Kretschmann E and Raether H 1968 Z. Naturforsch. A 23 2135
|
[54] |
Otto A 1968 Z. Phys. 216 410
|
[55] |
Li X F and Yu S F 2010 Opt. Lett. 35 2535
|
[56] |
Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photon. 2 351
|
[57] |
Flynn R A, Kim C S, Vurgaftman I, Kim M, Meyer J R, Mäkinen A J, Bussmann K, Cheng L, Choa F S and Long J P 2011 Opt. Express 19 8954
|
[58] |
Meng X, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Nano Lett. 13 4106
|
[59] |
Ramezani M, Halpin A, Fernández-Domínguez A I, Feist J, Rodriguez S R K, Garcia-Vidal F J and Rivas J G 2017 Optica 4 31
|
[60] |
Alam M Z, Aitchison J S and Mojahedi M 2014 Laser Photon. Rev. 8 394
|
[61] |
Sidiropoulos T P H, Roder R, Geburt S, Hess O, Maier S A, Ronning C and Oulton R F 2014 Nat. Phys. 10 870
|
[62] |
Zhang Q, Li G Y, Liu X F, Qian F, Li Y, Sum T C, Lieber C M and Xiong Q H 2014 Nat. Commun. 5 4953
|
[63] |
Chou Y H, Chou B T, Chiang C K, Lai Y Y, Yang C T, Li H, Lin T R and Lu T C 2015 ACS Nano 9 3978
|
[64] |
Chou B T, Chou Y H, Wu Y M, Chung Y C, Hsueh W J, Lin S W, Lu T C, Lin T R and Lin S D 2016 Sci. Rep. 6 1
|
[65] |
Chou Y H, Wu Y M, Hong, K B Chou B T Shih J H, Chung Y C Chen P J, Lin T R, Lin C C, Lin S D and Lu T C Nano Lett. 16 3179
|
[66] |
Fox M 2010 Optical Properties of Solids (Oxford:Oxford University Press)
|
[67] |
Drude P 1900 Ann. Phys. 306 566
|
[68] |
Naik G V, Shalaev G M and Boltasseva A 2013 Adv. Mater. 25 3264
|
[69] |
Khurgin J B and Boltasseva A 2012 MRS Bull. 37 768
|
[70] |
West P R, Ishii S, Naik G V, Emani N K, Shalaev V M and Boltasseva A 2010 Laser Photon. Rev. 4 795
|
[71] |
Chung Y C, Cheng P J, Chou Y H, Chou B T, Hong K B, Shih J H, Lin S D, Lu T C and Lin T R 2017 Sci. Rep. 7 39813
|
[72] |
Kazmerski L and Racine D M 1975 J. Appl. Phys. 46 791
|
[73] |
Clegg P 1952 Proc. Phys. Soc. Lond. Sect. B 65 774
|
[74] |
Denier van derGon A, Tromp R and Reuter M 1993 Thin Solid Films 236 140
|
[75] |
Park K H, Ha J S and Lee E H 1997 ETRI J. 19 71
|
[76] |
Logeeswaran V, Chan M L, Bayam Y, Saif Islam M, Horsley D, Li X, Wu W, Wang S and Williams R 2007 Appl. Phys. A 87 187
|
[77] |
Chen W, Thoreson M D, Ishii S, Kildishev A V and Shalaev V M 2010 Opt. Express 18 5124
|
[78] |
Pashley D 1959 Philos. Mag. 4 316
|
[79] |
Palmberg P, Rhodin T and Todd C 1967 Appl. Phys. Lett. 11 33
|
[80] |
Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Science 325 594
|
[81] |
Boltasseva A and Atwater H A 2011 Science 331 290
|
[82] |
Park J H, Ambwani P, Manno M, Lindquist N C, Nagpal P, Oh S H, Leighton C and Norris D J 2012 Adv. Mater. 24 3988
|
[83] |
Wu Y W, et al. 2014 Adv. Mater. 26 6106
|
[84] |
Wang C Y, Chen H Y, Sun L, Chen W L, Chang Y M, Ahn H, Li X and Gwo S 2015 Nat. Commun. 6 7734
|
[85] |
Chou Y H, Hong K B, Chang C T, Chang T C, Huang Z T, Cheng P J, Yang J H, Lin M H, Lin T R, Chen K P, Gwo S and Lu T C 2018 Nano Lett. 18 747
|
[86] |
Berini P and De Leon I 2012 Nat. Photon. 6 16
|
[87] |
Gwo S and Shih C K 2016 Rep. Prog. Phys. 79 086501
|
[88] |
Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[89] |
Wang S, Wang X Y, Li B, Chen H Z, Wang Y L, Dai L, Oulton R F and Ma R M 2017 Nat. Commun. 8 1889
|
[90] |
Kao T S, Chou Y H, Chou C H, Chen F C and Lu T C 2014 Appl. Phys. Lett. 105 231108
|
[91] |
Kao T S, Hong K B, Chou Y H, Huang J F, Chen F C and Lu T C 2016 Opt. Express 24 20696
|
[92] |
Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
|
[93] |
Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476
|
[94] |
Chang S W, Lin T R and Chuang S L 2010 Opt. Express 18 15039
|
[95] |
Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
|
[96] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[97] |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
|
[98] |
Stockman M I 2011 Opt. Express 19 22029
|
[99] |
Novotny L and Hecht B 2012 Principles of Nano-Optics (2nd Edn.) (Cambridge:Cambridge University Press)
|
[100] |
Chou Y H, Hong K B, Chung Y C, Chang C T, Chou B T, Lin T R, Arakelian S M, Alodjants A P and Lu T C 2017 IEEE JSTQE 23 4601907
|
[101] |
Chou B T, Lu T C and Lin S D 2015 J. Lightw. Technol. 1 1
|
[102] |
Neira A D, Wurtz G A, Ginzburg P and Zayats A V 2014 Opt. Express 22 10987
|
[103] |
Pavarelli N et al 2015 J. Light. Technol. 33 991
|
[104] |
Ma R M, Ota S, Li Y M, Yang S and Zhang X 2014 Nat. Nanotechnol. 9 600
|
[105] |
Abe H, Narimatsu M, Watanabe T, Furumoto T, Yokouchi Y, Nishijima Y, Kita S, Tomitaka A, Ota S, Takemura Y and Toshihiko Baba 2015 Opt. Express 23 17056
|
[106] |
Atwater H A 2007 Sci. Am. 296 56
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|