CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy |
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) |
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract With the increasing interest in Cu2O-based devices for photovoltaic applications, the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2O3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu2O. A type-Ⅱ band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
|
Received: 25 November 2018
Revised: 06 May 2019
Accepted manuscript online:
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
77.55.hf
|
(ZnO)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404302) and the Laser Fusion Research Center Funds for Young Talents, China (Grant No. RCFPD1-2017-9). |
Corresponding Authors:
Wei-Dong Wu
E-mail: wuweidongding@163.com
|
Cite this article:
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy 2019 Chin. Phys. B 28 087301
|
[1] |
Minami T, Nishi Y, Miyata T and Nomoto J 2011 Appl. Phys. Express 4 062301
|
[2] |
Wick R and Tilley S D 2015 J. Phys. Chem. C 119 26243
|
[3] |
Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B: Condens. Matter 76 045209
|
[4] |
Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
|
[5] |
Minami T, Miyata T and Nishi Y 2014 Thin Solid Films 559 105
|
[6] |
Lofeski J J 1956 J. Appl. Phys. 27 777
|
[7] |
Minami T, Nishi Y and Miyata T 2016 Appl. Phys. Express 9 052301
|
[8] |
Sebastian S, Hellmann J C, Tilley S D, Graetzel M, Morasch J, Deuermeier J, Jaegermann W and Klein A 2016 ACS Appl. Mater. Interfaces 8 21824
|
[9] |
Wilson S S, Tolstova Y, Scanlon D O, Watson G W, Atwater H A and Bosco J P 2014 Energy Environ. Sci. 7 3606
|
[10] |
Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y 2014 Nano Res. 7 860
|
[11] |
Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X and Zhang Y 2015 Sci. Rep. 5 7882
|
[12] |
Xu C, Cao L, Su G, Liu W, Liu H, Yu Y and Qu X 2010 J. Hazard. Mater. 176 807
|
[13] |
Ievskaya Y, Hoye R L Z, Sadhanala A, Musselman K and MacManus-Driscoll J L 2015 Sol. Energy Mater. Sol. Cells 135 43
|
[14] |
Ishizuka S, Suzuki K, Okatomo Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K and Niki S 2004 Phys. Status Solidi 4 1067
|
[15] |
Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
|
[16] |
Tanaka H, Shimakawa T, Miyata T, Sato H and Minami T 2005 Appl. Surf. Sci. 244 568
|
[17] |
Minami T, Miyata T, Ihara K, Minamino Y and Tsukada S 2006 Thin Solid Films 494 47
|
[18] |
Dong C J, Yu W X, Xu M, Cao J J, Chen C, Yu W W and Wang Y D 2011 J. Appl. Phys. 110 073712
|
[19] |
Zhang P F, Liu X L, Zhang R Q, Fan H B, Yang A L, Wei H Y, Jin P, Yang S Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 012104
|
[20] |
Cho H, Douglas E A, Gila B P, Craciun V, Lambers E S, Ren F and Pearton S J 2012 Appl. Phys. Lett. 100 012105
|
[21] |
Fan H B, Sun G S, Yang S Y, Zhang P F, Zhang R Q, Wei H Y, Jiao C M, Liu X L, Chen Y H, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 192107
|
[22] |
Kraut E, Grant R, Waldrop J and Kowalczyk S 1980 Phys. Rev. Lett. 44 1620
|
[23] |
Alay J L, Hirose M 1997 J. Appl. Phys. 81 1606
|
[24] |
Perego M and Seguini G 2011 J. Appl. Phys. 110 053711
|
[25] |
Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fan X W 2008 Appl. Phys. Lett. 93 082108
|
[26] |
You J B, Zhang X W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701
|
[27] |
Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
|
[28] |
Lu Y, Le Breton J C, Turban P, Lépine B, Schieffer P and Jézéquel G 2006 Appl. Phys. Lett. 88 042108
|
[29] |
Li Y F, Yao B, Lu Y M, Li B H, Gai Y Q, Cong C X, Zhang Z Z, Zhao D X, Zhang J Y, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 92 192116
|
[30] |
Poulston S, Parlett P M, Stone P and Bowker M 1996 Surf. Interface Anal. 24 811
|
[31] |
Barman S R and Sarma D D 1992 J. Phys. Condens. Matter 4 7607
|
[32] |
Tobin J P, Hirschwald W and Cunningham J 1983 Appl. Surf. Sci. 16 441
|
[33] |
Ichimura M, Song Y 2011 Jpn. J. Appl. Phys. 50 051002
|
[34] |
Kramm B, Laufer A, Reppin D, Kronenberger A, Hering P, Polity A and Meyer B K 2012 Appl. Phys. Lett. 100 094102
|
[35] |
Yang M, Zhu L, Li Y, Cao L and Guo Y 2013 J. Alloys Compd. 578 143
|
[36] |
Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
|
[37] |
Chen S J, Lin L M, Liu J Y, Lv P W, Wu X P, Zheng W F, Qu Y and Lai F C 2015 J. Alloys Compd. 644 378
|
[38] |
Nishi Y, Miyata T and Minami T 2013 Thin Solid Films 528 72
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|