Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087301    DOI: 10.1088/1674-1056/28/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy

Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东)
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  With the increasing interest in Cu2O-based devices for photovoltaic applications, the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2O3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu2O. A type-Ⅱ band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
Keywords:  Cu2O      ZnO      x-ray photoelectron spectroscopy      laser-molecular beam epitaxy  
Received:  25 November 2018      Revised:  06 May 2019      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  77.55.hf (ZnO)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404302) and the Laser Fusion Research Center Funds for Young Talents, China (Grant No. RCFPD1-2017-9).
Corresponding Authors:  Wei-Dong Wu     E-mail:  wuweidongding@163.com

Cite this article: 

Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东) Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy 2019 Chin. Phys. B 28 087301

[1] Minami T, Nishi Y, Miyata T and Nomoto J 2011 Appl. Phys. Express 4 062301
[2] Wick R and Tilley S D 2015 J. Phys. Chem. C 119 26243
[3] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B: Condens. Matter 76 045209
[4] Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
[5] Minami T, Miyata T and Nishi Y 2014 Thin Solid Films 559 105
[6] Lofeski J J 1956 J. Appl. Phys. 27 777
[7] Minami T, Nishi Y and Miyata T 2016 Appl. Phys. Express 9 052301
[8] Sebastian S, Hellmann J C, Tilley S D, Graetzel M, Morasch J, Deuermeier J, Jaegermann W and Klein A 2016 ACS Appl. Mater. Interfaces 8 21824
[9] Wilson S S, Tolstova Y, Scanlon D O, Watson G W, Atwater H A and Bosco J P 2014 Energy Environ. Sci. 7 3606
[10] Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y 2014 Nano Res. 7 860
[11] Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X and Zhang Y 2015 Sci. Rep. 5 7882
[12] Xu C, Cao L, Su G, Liu W, Liu H, Yu Y and Qu X 2010 J. Hazard. Mater. 176 807
[13] Ievskaya Y, Hoye R L Z, Sadhanala A, Musselman K and MacManus-Driscoll J L 2015 Sol. Energy Mater. Sol. Cells 135 43
[14] Ishizuka S, Suzuki K, Okatomo Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K and Niki S 2004 Phys. Status Solidi 4 1067
[15] Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
[16] Tanaka H, Shimakawa T, Miyata T, Sato H and Minami T 2005 Appl. Surf. Sci. 244 568
[17] Minami T, Miyata T, Ihara K, Minamino Y and Tsukada S 2006 Thin Solid Films 494 47
[18] Dong C J, Yu W X, Xu M, Cao J J, Chen C, Yu W W and Wang Y D 2011 J. Appl. Phys. 110 073712
[19] Zhang P F, Liu X L, Zhang R Q, Fan H B, Yang A L, Wei H Y, Jin P, Yang S Y, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 012104
[20] Cho H, Douglas E A, Gila B P, Craciun V, Lambers E S, Ren F and Pearton S J 2012 Appl. Phys. Lett. 100 012105
[21] Fan H B, Sun G S, Yang S Y, Zhang P F, Zhang R Q, Wei H Y, Jiao C M, Liu X L, Chen Y H, Zhu Q S and Wang Z G 2008 Appl. Phys. Lett. 92 192107
[22] Kraut E, Grant R, Waldrop J and Kowalczyk S 1980 Phys. Rev. Lett. 44 1620
[23] Alay J L, Hirose M 1997 J. Appl. Phys. 81 1606
[24] Perego M and Seguini G 2011 J. Appl. Phys. 110 053711
[25] Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fan X W 2008 Appl. Phys. Lett. 93 082108
[26] You J B, Zhang X W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701
[27] Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
[28] Lu Y, Le Breton J C, Turban P, Lépine B, Schieffer P and Jézéquel G 2006 Appl. Phys. Lett. 88 042108
[29] Li Y F, Yao B, Lu Y M, Li B H, Gai Y Q, Cong C X, Zhang Z Z, Zhao D X, Zhang J Y, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 92 192116
[30] Poulston S, Parlett P M, Stone P and Bowker M 1996 Surf. Interface Anal. 24 811
[31] Barman S R and Sarma D D 1992 J. Phys. Condens. Matter 4 7607
[32] Tobin J P, Hirschwald W and Cunningham J 1983 Appl. Surf. Sci. 16 441
[33] Ichimura M, Song Y 2011 Jpn. J. Appl. Phys. 50 051002
[34] Kramm B, Laufer A, Reppin D, Kronenberger A, Hering P, Polity A and Meyer B K 2012 Appl. Phys. Lett. 100 094102
[35] Yang M, Zhu L, Li Y, Cao L and Guo Y 2013 J. Alloys Compd. 578 143
[36] Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
[37] Chen S J, Lin L M, Liu J Y, Lv P W, Wu X P, Zheng W F, Qu Y and Lai F C 2015 J. Alloys Compd. 644 378
[38] Nishi Y, Miyata T and Minami T 2013 Thin Solid Films 528 72
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[9] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[10] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[11] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[12] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[13] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[14] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[15] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
No Suggested Reading articles found!