CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure |
Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财) |
Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract In this work, we investigate the electrical transport property and electronic structure of oxide heterostructure LaCrO3/SrTiO3 (111). The interface grown under relatively low oxygen partial pressure is found to be metallic with a conducting critical thickness of 11 unit cells of LaCrO3. This criticality is also observed by x-ray photoelectron spectroscopy, in which the Ti3+ signal intensity at the spectrum edge of the Ti-2p3/2 core level increases rapidly when the critical thickness is reached. The variations of the valence band offset and full width at half maximum of the core-level spectrum with LaCrO3 thickness suggest that the built-in fields exist both in LaCrO3 and in SrTiO3. Two possible origins are proposed:the charge transfer from LaCrO3 and the formation of a quantum well in SrTiO3. Our results shed light on the understanding of the doping mechanism at the polar/non-polar oxide interface. Moreover, due to the interesting lattice and spin structure of LCO in the (111) direction, our work provides a basis for further exploring the novel topological quantum phenomena in this system.
|
Received: 02 November 2017
Revised: 08 January 2018
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674031, 11474022 11474024, 11422430, and 11374035) and the National Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921701, and 2013CBA01603). |
Corresponding Authors:
Jia-Cai Nie
E-mail: jcnie@bnu.edu.cn
|
Cite this article:
Yan-Peng Hong(洪彦鹏), Xin-Xin Wang(王欣欣), Guo-Liang Qu(曲国良), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Ke-Jian Liu(刘科践), Yong-Chun Li(李永春), Chang-Min Xiong(熊昌民), Rui-Fen Dou(窦瑞芬), Lin He(何林), Jia-Cai Nie(聂家财) Conductivity and band alignment of LaCrO3/SrTiO3 (111) heterostructure 2018 Chin. Phys. B 27 047301
|
[1] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[2] |
Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
|
[3] |
Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[4] |
Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
|
[5] |
Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
|
[6] |
Dikin D, Mehta M, Bark C, Folkman C, Eom C and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
|
[7] |
Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
|
[8] |
Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
|
[9] |
Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
|
[10] |
Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
|
[11] |
Woltmann C, Harada T, Boschker H, Srot V, van Aken P A, Klauk H and Mannhart J 2015 Phys. Rev. Appl. 4 064003
|
[12] |
Chen Y Z, Pryds N, Kleibeuker J E, Koster G, Sun J R, Stamate E, Shen B G, Rijnders G and Rijnders S 2011 Nano Lett. 11 3774
|
[13] |
Herranz G, Sánchez F, Dix N, Scigaj M and Fontcuberta J 2012 Sci. Rep. 2 758
|
[14] |
Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116
|
[15] |
Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
|
[16] |
Chen Y Z, Trier F, Wijnands T, et al. 2015 Nat. Mater. 14 801
|
[17] |
Chambers S A, Qiao L, Droubay T C, Kaspar T C, Arey B W and Sushko P V 2011 Phys. Rev. Lett. 107 206802
|
[18] |
Colby R, Qiao L, Zhang K H L, Shutthanandan V, Ciston J, Kabius B and Chambers S A 2013 Phys. Rev. B 88 155325
|
[19] |
Kumar P, Pal P, Shukla A K, Pulikkotil J J and Dogra A 2015 Phys. Rev. B 91 115127
|
[20] |
Haldane F D M 1988 Phys. Rev. Lett. 61 2015
|
[21] |
Xiao D, Zhu W G, Ran Y, Nagaosa N and Okamoto S 2011 Nat. Commun. 2 596
|
[22] |
Kane C J and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[23] |
Liang Q F, Wu L H and Hu X 2013 New J. Phys. 15 063031
|
[24] |
Koster G, Kropman B L, Rijnders G J H M, Blank D H A and Rogalla H 1998 Appl. Phys. Lett. 73 2920
|
[25] |
Yun K Y, Noda M and Okuyama M 2003 Appl. Phys. Lett. 83 3981
|
[26] |
Hong R J, Qi H J, Huang J B, He H B, Fan Z X and Shao J D 2005 Thin Solid Films 473 58
|
[27] |
Takizawa M, Tsuda S, Susaki T, Hwang H Y and Fujimori A 2011 Phys. Rev. B 84 245124
|
[28] |
Drera G, Salvinelli G, Brinkman A, Huijben M, Koster G, Hilgenkamp H, Rijnders G, Visentin D and Sangaletti L 2013 Phys. Rev. B 87 075435
|
[29] |
Koitzsch A, Ocker J, Knupfer M, Dekker M C, Dörr K, Büchner B and Hoffmann P 2011 Phys. Rev. B 84 245121
|
[30] |
Qiao L, Droubay T C, Kaspar T C, Sushko P V and Chambers S A 2011 Surf. Sci. 605 1381
|
[31] |
Chambers S A, Englehard H M, Shutthanandan V, Zhu Z, Droubay T C, Feng T, Lee H D, Gustafsson T, Garfunkel E, Shah A, Zuo J M and Ramasse Q M 2010 Surf. Sci. Rep. 65 317
|
[32] |
Segal Y, J. Ngai J H, Reiner J W, Walker F J and Ahn C H 2009 Phys. Rev. B 80 241107
|
[33] |
Bristowe N C, Littlewood P B and Artacho E 2011 Phys. Rev. B 83 205405
|
[34] |
Slooten E, Zhong Z, Molegraaf H J A, Eerkes P D, de Jong S, Massee F, van Heumen E, Kruize M K, Wenderich S, Kleibeuker J E, Gorgoi M, Hilgenkamp H, Brinkman A, Huijben M, Rijnders G, Blank D H A, Koster G, Kelly P J and Golden M S 2013 Phys. Rev. B 87 085128
|
[35] |
Zhou J, Asmara T C, Yang M, Sawatzky G A, Feng Y P and Rusydi A 2015 Phys. Rev. B 92 125423
|
[36] |
Yu L P and Zunger A 2014 Nat. Commun. 5 5118
|
[37] |
Yoshimatsu K, Yasuhara R, Kumigashira H and Oshima M 2008 Phys. Rev. Lett. 101 026802
|
[38] |
Han Y L, Fang Y W, Yang Z Z, Li C J, He L, Shen S C, Luo Z Z, Qu G L, Xiong C M, Dou R F, Wei X, Gu L, Duan C G and Nie J C 2015 Phys. Rev. B 92 115304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|