Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116502    DOI: 10.1088/1674-1056/26/11/116502

High-temperature thermodynamics of silver:Semi-empirical approach

R H Joshi1, B Y Thakore1, P R Vyas2, A R Jani3, N K Bhatt4
1. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, India;
2. Department of Physics, School of Sciences, Gujarat University, Ahmedabad 380009, India;
3. Sardar Patel Center for Science and Technology, Vallabh Vidyanagar 388120, India;
4. Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001, India
Abstract  We report high-temperature thermodynamics for fcc silver by combining ab initio phonon dynamics to empirical quadratic temperature-dependent term for anharmonic part of Helmholtz free energy.The electronic free energy is added through an interpolation scheme,which connects ambient condition free electron gas model to Thomas-Fermi results. The present study shows good agreement with experimental and reported findings for several thermal properties,and the discrepancy observed in some caloric properties is addressed.The decreases in the product of volume thermal expansion coefficient and isothermal bulk modulus and in the constant volume anharmonic lattice specific heat at high temperature are the clear evidences of proper account of anharmonicity.The present study also reveals that T2-dependent anharmonic free energy is sufficient for correct evaluation of thermal pressure and conventional Grüneisen parameter.We observe that the intrinsic phonon anharmonicity starts dominating above characteristic temperature,which is attributed to higher order anharmonicity and can be related to higher order potential derivatives.We conclude that the uncorrelated and largeamplitude lattice vibrations at high temperature raise dominating intrinsic thermal stress mechanism,which surpasses the phonon-anharmonism and requires future consideration.
Keywords:  thermodynamics      anharmonicity      Grüneisen parameter      silver  
Received:  17 May 2017      Revised:  30 September 2017      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Major Research Project, UGC, New Delhi, India (Grant No. 42-771/2013 (SR)).
Corresponding Authors:  N K Bhatt     E-mail:,

Cite this article: 

R H Joshi, B Y Thakore, P R Vyas, A R Jani, N K Bhatt High-temperature thermodynamics of silver:Semi-empirical approach 2017 Chin. Phys. B 26 116502

[1] Baroni S, Giannozzi P and Isaev E 2010 Rev. Miner. Geochem. 71 39
[2] Fultz B 2010 Prog. Mater. Sci. 55 247
[3] Narasimhan S and Gironcoli S 2002 Phys. Rev. B 65 064302
[4] Karki B B, Wentzcovitch R M, Gironcoli S and Baroni S 2000 Phys. Rev. B 61 8793
[5] Bajgain S K, Ghosh D B and Karki B B 2015 Phys. Chem. Miner 42 393
[6] Gygi F, Duchemin I, Donadio D and Galli G 2009 J. Phys.-Conf. Ser. 180 012074
[7] Wentzcovitch R M, Martins J L and Allen P B 1992 Phys. Rev. B 45 11372
[8] Wang Y, Liu Z K, Chen L Q, Burakovsky L and Ahuja R 2006 J. Appl. Phys. 100 023533
[9] Wang Y and Li L 2000 Phys. Rev. B 62 196
[10] Li L and Wang Y 2001 Phys. Rev. B 63 245108
[11] Bhattacharya C and Menon S V G 2009 J. Appl. Phys. 105 064907
[12] Bhatt N K, Thakore B Y, Vyas P R and Jani A R 2010 Physica B 405 3492
[13] Song H F and Liu H F 2007 Phys. Rev. B 75 245126
[14] Sun J, Cai L Wu Q and Jing F 2005 Phys. Rev. B 71 024107
[15] Kumar P, Bhatt N K, Vyas P R and Gohel V B 2016 Eur. Phys. J. B 89 219
[16] Carrier P and Wentzcovitch R M 2007 Phys. Rev. B 76 064116
[17] Wu Z and Wentzcovitch R M 2009 Phys. Rev. B 79 104304
[18] Oganov A R and Dorogokupets P I 2004 J. Phys.-Condens. Matter 16 1351
[19] Oganov A R, Brodholt J P and Price G D 2000 Phys. Earth Planet. In. 122 277
[20] Dorogokupets P I and Oganov A R 2007 Phys. Rev. B 75 024115
[21] Wallace D C 1972 Thermodynamics of Crystals(New York:Wiley)
[22] Quantum Espresso Code,
[23] Aldegunde M, Kermode J R and Zabaras N 2016 J. Comput. Phys. 311 173
[24] Kittel C 1996 Introduction to Solid State Physics, 7th edn.(New York:John Wiley and Sons, Inc.)
[25] Ambrosetti A and Silvestrelli P L 2016 Phys. Rev. B 94 045124
[26] Rowland W D and White J S 1972 J. Phys. F 2 231
[27] Nand S, Tripathi B B and Gupta H C 1976 Lett. Nuovo Cimento 15 146
[28] Khanna K N 1979 Solid State Commun. 29 801
[29] Thoms J F 1973 Phys. Rev. B 7 2385
[30] Antonov V M, Milman V Y, Nemoshkalenko V V and ZhalkoTitarenko A V 1990 Z. Phys. B-Condens. Matter 79 223
[31] Hiki Y and Granato A 1966 Phys. Rev. 144 411
[32] Daniels W B and Smith C S 1958 Phys. Rev. 111 713
[33] Verma M L and Rathore R P S 1994 Ind. J. Pure Appl. Phys. 32 308
[34] Soma T, Satoch H and Matsuo H 1987 1 Solid State Commun. 40 933
[35] Kamatikahara W A and Brockhouse B N 1969 Phys. Lett. 29A 639
[36] McCloskey D J 1964 Report No. RM-3905-PR. Rand Corporation
[37] Burakovsky L and Preston D L 2004 J. Phys. Chem. Solids 65 158
[38] Slater J C 1939 Introduction to Chemical Physics(New York:McGraw-Hill) Chapter XⅡ
[39] Dugdale J S and MacDonald K C 1953 Phys. Rev. 89 832
[40] Vashchenko V Y and Zubarev V N 1963 Fiz. Tv. Tela. 5 886
[41] Stacey F D 2005 Rep. Prog. Phys. 68 341
[42] Bhatt N K, Vyas P R and Jani A R 2010 Philos. Mag. 90 1599
[43] Touloukian Y S, Kirky R K, Taylor R E and Lee T Y R(eds.) 1975 Thermal Properties of Matter(New York:TPRC Data Books) Vol. 12
[44] Januszko A and Bose S K 2015 J. Phys. Chem. Solids 82 67
[45] Januszko A and Bose S K 2015 J. Phys. Chem. Solids 77 30
[46] Singh R P 2014 Asian J. Adv. Basic Sci. 2 116
[47] Čaǧın T, Dereli G, Uludoǧan M and Tomak M 1999 Phys. Rev. B 59 45
[48] Robie R A, Hemingway B S and Fisher J R 1979 U. S. Geological Survey Bulletin 1452
[49] Stacey F D and Isaak D 2003 J. Geophys. Res. 108 2440
[50] Zoli M 1991 Phys. Rev. B 41 7497
[51] Shukla R C and Taylor R 1974 Phys. Rev. 9 4116
[52] Katsnelson M I, Maksyutov A F and Trefilov A V 2002 Phys. Lett. A 295 50
[53] MacDonald R A and MacDonald W M 1981 Phys. Rev. B 24 171
[54] Tang X and Fultz B 2011 Phys. Rev. B 84 054303
[1] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[5] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[6] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[7] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[8] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[9] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[12] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[13] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[14] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[15] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
No Suggested Reading articles found!