Abstract The reduced graphene oxide/silver selenide nanowire (rGO/Ag2Se NW) composite powders were fabricated via a wet chemical approach, and then flexible rGO/Ag2Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment. A highest power factor of 228.88 μW·m-1·K-2 was obtained at 331 K for the cold-pressed rGO/Ag2Se NW composite film with 0.01 wt% rGO. The rGO/Ag2Se NW composite film revealed superior flexibility as the power factor retained 94.62% after bending for 500 times with a bending radius of 4 mm, which might be due to the interwoven network structures of Ag2Se NWs and pliability of rGO as well as nylon membrane. These results demonstrated that the GO/Ag2Se NW composite film has a potential for preparation of flexible thermoelectric devices.
Fund: Project supported by the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning (Grant No. TP2020068), Shanghai Innovation Action Plan Project (Grant No. 17090503600), and Shanghai Sailing Program (Grant No. 20YF1447300).
Corresponding Authors:
Yong Du, Qiufeng Meng
E-mail: ydu@sit.edu.cn;mengqiufeng@sit.edu.cn
Cite this article:
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊) Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process 2022 Chin. Phys. B 31 028103
[1] Zong P A, Zhang P, Yin S J, Huang Y J, Wang Y L and Wan C L 2019 Adv. Electron. Mater.5 1800842 [2] Lv H C, Liang L R, Zhang Y C, Deng L, Chen Z J, Liu Z X, Wang H F and Chen G M 2021 Nano Energy88 106260 [3] Du Y, Chen J G, Meng Q F, Dou Y C, Xu J Y and Shen S Z 2020 Vacuum178 109384 [4] Ou C L, Sangle A L, Datta A, Jing Q S, Busolo T, Chalklen T, Narayan V and Kar-Narayan S 2018 ACS Appl. Mater. Interfaces10 19580 [5] Du Y, Shen S Z, Cai K F and Casey P S 2012 Prog. Polym. Sci.37 820 [6] Wei Q S, Mukaida M, Kirihara K and Ishida T 2021 Thermoelectric Energy Conversion (Cambridge:Woodhead) pp. 333-345 [7] Cao T Y, Shi X L, Zou J and Chen Z G 2021 Microstructures1 2021007 [8] Du Y, Xu J Y, Paul B and Eklund P 2018 Appl. Mater. Today12 366 [9] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature508 373 [10] Xu S D, Shi X L, Dargusch M, Di C, Zou J and Chen Z G 2021 Prog. Mater. Sci.121 100840 [11] Kim C S, Lee G S, Choi H, Kim Y J, Yang H M, Lim S H, Lee S G, Cho B J 2018 Appl. Energ.214 131 [12] Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J and Chen L D 2019 Energ. Environ. Sci.12 2983 [13] Meng Q F, Song H J, Du Y, Ding Y F and Cai K F 2021 J. Materiomics7 302 [14] Jia Y H, Jiang Q L, Sun H D, Liu P P, Hu D H, Pei Y Z, Liu W S, Crispin X, Fabiano S, Ma Y G and Cao Y 2021 Adv. Mater.33 2102990 [15] Xu S D, Hong M, Shi X L, Li M, Sun Q, Chen Q X, Dargusch M, Zou J and Chen Z G 2020 Energ. Environ. Sci.13 3480 [16] Ding Y F, Qiu Y, Cai K F, Yao Q, Chen S, Chen L D and He J Q 2019 Nat. Commun.10 841 [17] Lu Y, Qiu Y, Cai K F, Ding Y F, Wang M D, Jiang C, Yao Q, Huang C J, Chen L D and He J Q 2020 Energ. Environ. Sci.13 1240 [18] Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y and Wei P 2020 ACS Appl. Mater. Interfaces12 9646 [19] Jiang C, Wei P, Ding Y F, Cai K F, Tong L, Gao Q, Lu Y, Zhao W Y and Chen S 2021 Nano Energy80 105488 [20] Park D, Ju H and Kim J 2021 J. Ind. Eng. Chem.93 333 [21] Liu W D, Yu Y, Dargusch M, Liu Q F and Chen Z G 2021 Renew. Sust. Energ. Rev.141 110800 [22] Liu X, Du Y, Meng Q F, Shen S Z and Xu J Y 2019 J. Mater. Sci.-Mater. El. 30 20369 [23] Ju H, Kim M and Kim J 2015 Chem. Eng. J.275 102 [24] Zhou H J, Zhang Z J, Sun C X, Deng H and Fu Q 2020 ACS Appl. Mater. Interfaces12 51506 [25] Xu S D, Hong M, Li M, Sun Q, Yin Y, Liu W D, Shi X L, Dargusch M, Zou J and Chen Z G 2021 Appl. Phys. Rev.8 041404
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.