Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067301    DOI: 10.1088/1674-1056/ab862a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical spin-to-orbital angular momentum conversion instructured optical fields

Yang Zhao(赵阳)1, Cheng-Xi Yang(阳成熙)1, Jia-Xi Zhu(朱家玺)1, Feng Lin(林峰)1, Zhe-Yu Fang(方哲宇)1,2,3,4, Xing Zhu(朱星)1,2,4
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  We investigate the dynamic quantities: momentum, spin and orbital angular momenta (SAM and OAM), and their conversion relationship in the structured optical fields at subwavelength scales, where the spin-orbit interaction (SOI) plays a key role and determines the behaviors of light. Specifically, we examine a nanostructure of a Ag nanoparticle (Ag NP) attached on a cylindrical Ag nanowire (Ag NW) under illumination of elliptically polarized light. These dynamic quantities obey the Noether theorem, i.e., for the Ag nanoparticle with spherical symmetry, the total angular momentum consisting of SAM and OAM conserves; for the Ag NW with translational symmetry, the orbital momentum conserves. Meanwhile, the spin-to-orbital angular momentum conversion is mediated by SOI arising from the spatial variation of the optical potential. In this nanostructure, the conservation of momentum imposes a strict restriction on the propagation direction of the surface plasmon polaritons along the Ag NW. Meanwhile, the orbital momentum is determined by the polarized properties of the excitation light and the topography of the Ag NP. Our work offers insights to comprehend the light behaviors in the structured optical fields in terms of the dynamic quantities and benefits to the design of optical nano-devices based on interactions between spin and orbital degrees of freedom.
Keywords:  orbital angular momentum      spin angular momentum      spin-orbit interaction of light      silver nanowire  
Received:  03 March 2020      Revised:  31 March 2020      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.67.Uh (Nanowires)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0205700, 2015CB932403, and 2017YFA0206000) and the National Natural Science Foundation of China (Grant Nos. 21790364, 11374023, 61422501, 11674012, 61176120, 61378059, 6097701, and 61521004).
Corresponding Authors:  Feng Lin, Zhe-Yu Fang     E-mail:  linf@pku.edu.cn;zhyfang@pku.edu.cn

Cite this article: 

Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星) Optical spin-to-orbital angular momentum conversion instructured optical fields 2020 Chin. Phys. B 29 067301

[1] Bliokh K Y, Smirnova D and Nori F 2015 Science 348 1448
[2] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Nature 522 192
[3] Kapitanova P V, Ginzburg P, Rodriguez-Fortuno F J, Filonov D S, Voroshilov P M, Belov P A, Poddubny A N, Kivshar Y S, Wurtz G A and Zayats A V 2014 Nat. Commun. 5 3226
[4] Ling X, Zhou X, Huang K, Liu Y, Qiu C W, Luo H and Wen S 2017 Rep. Prog. Phys. 80 066401
[5] O'Connor D, Ginzburg P, Rodriguez-Fortuno F J, Wurtz G A and Zayats A V 2014 Nat. Commun. 5 5327
[6] Pan D, Wei H, Gao L and Xu H 2016 Phys. Rev. Lett. 117 166803
[7] Petersen J, Volz J and Rauschenbeutel A 2014 Science 346 67
[8] Slobozhanyuk A P, Poddubny A N, Sinev I S, Samusev A K, Yu Y F, Kuznetsov A I, Miroshnichenko A E and Kivshar Y S 2016 Laser Photon. Rev. 10 656
[9] Sukhov S, Kajorndejnukul V, Naraghi R R and Dogariu A 2015 Nat. Photon. 9 809
[10] Tsesses S, Cohen K, Ostrovsky E, Gjonaj B and Bartal G 2019 Nano Lett. 19 4010
[11] Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F and Villoresi P 2014 Phys. Rev. Lett. 113 060503
[12] Wang Y, Xu Y, Feng X, Zhao P, Liu F, Cui K, Zhang W and Huang Y 2016 Opt. Lett. 41 1478
[13] Yin X, Ye Z, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[14] Zhou J, Qian H, Hu G, Luo H, Wen S and Liu Z 2018 ACS Nano 12 82
[15] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443
[16] Guo Q, Fu T, Tang J, Pan D, Zhang S and Xu H 2019 Phys. Rev. Lett. 123 183903
[17] Yang L, Jie R, HaiTao J, Yong S and Hong C 2017 Acta Phys. Sin. 66 22 (in Chinese)
[18] Donato M, Hernandez J, Mazzulla A, Provenzano C, Saija R, Sayed R, Vasi S, Magazzú A, Pagliusi P and Bartolino R 2014 Nat. Commun. 5 3656
[19] Zhang T, Mahdy M R C, Liu Y, Teng J H, Lim C T, Wang Z and Qiu C W 2017 ACS Nano 11 4292
[20] Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[21] Bliokh K Y, Bekshaev A Y and Nori F 2017 Phys. Rev. Lett. 119 073901
[22] Bliokh K Y, Kivshar Y S and Nori F 2014 Phys. Rev. Lett. 113 033601
[23] Soper D E 1976 Classical Field Theory (New York: Wiley)
[24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[25] Baumberg J J, Aizpurua J, Mikkelsen M H and Smith D R 2019 Nat. Mater. 18 668
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[9] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[10] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[11] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[12] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[13] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[14] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
[15] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
No Suggested Reading articles found!