Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078103    DOI: 10.1088/1674-1056/26/7/078103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol

Song He(何松), Xiang Zhang(张祥), Bingchu Yang(杨兵初), Xiaomei Xu(徐晓梅), Hui Chen(陈辉), Conghua Zhou(周聪华)
Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq, conductivity of 2.63×104 S/cm, and contact resistance of 1.0 Ω/cm2 were measured in the films, along with excellent resistance to scratching and good flexibility, making them suitable electrical contact materials for flexible optoelectronic devices. Effects of curing temperature, curing duration, film thickness, and nanowire length on the film's electrical properties were studied. Due to the abundance of hydroxyl groups on its molecular chains, the addition of PVA improves the film's flexibility and resistance to scratching. Increased nanowire density and nanowire length benefit film conductance. Monte Carlo simulation was used to further explore the impact of these two parameters on the conductivity. It was observed that longer nanowires produce a higher length-ratio of conducting routes in the networks, giving better film conductivity.
Keywords:  conductive composite      polyvinyl alcohol      silver nanowires      Monte Carlo simulation  
Received:  26 February 2017      Revised:  22 March 2017      Accepted manuscript online: 
PACS:  81.16.Be (Chemical synthesis methods)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61306080),the Natural Science Foundation of Hunan Province,China (Grant No.2015JJ3143),and the Scientific and Technological Project of Hunan Provincial Development and Reform Commission,China.
Corresponding Authors:  Conghua Zhou     E-mail:  chzhou@csu.edu.cn

Cite this article: 

Song He(何松), Xiang Zhang(张祥), Bingchu Yang(杨兵初), Xiaomei Xu(徐晓梅), Hui Chen(陈辉), Conghua Zhou(周聪华) Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol 2017 Chin. Phys. B 26 078103

[1] Angmo D and Krebs F C 2013 J. Appl. Poly. Sci. 129 1
[2] Kim S, Kwon H J, Lee S, Shim H, Chun Y, Choi W, Kwack J, Han D, Song M, Kim S, Mohammadi S, Kee I and Lee S Y 2011 Adv. Mater. 23 3511
[3] Hoey J M, Reich M T, Halvorsen A, Vaselaar D, Braaten K, Maassel M, Akhatov I S, Ghandour O, Drzaic P and Schulz D L 2009 IEEE Trans. Adv. Packag. 32 809
[4] Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz H E, Lovinger A J and Bao Z 2001 Appl. Phys. Lett. 78 2229
[5] Mantysalo M and Mansikkamaki P 23rd International Conference on Digital Printing Technologies, Technical Program and Proceedings/Digital Fabrication 2007(Nip23) 16–21 September 2007 Anchorage Alaska USA 813
[6] Xu L, Wan F, Rong Y, Chen H, He S, Xu X M, Liu G, Han H, Yuan Y B, Yang J L, Gao Y L, Yang B C and Zhou C H 2017 Org. Electron. 45 131
[7] Li S G, Yang B C, Wu R S, Zhang C, Zhang C J, Tang X F, Liu G, Liu P, Zhou C H, Gao Y L, Meng J Q and Yang J L 2016 Org. Electron. 39 304
[8] Park K, Seo D and Lee J 2008 Colloids Surf. A:Physicochem. Eng. Asp. 313–314 351
[9] Park S, Seo D and Lee J 2008 Colloids Surf. A:Physicochem. Eng. Asp. 313–314 197
[10] Wang T, Chen X, Lu G Q and Lei G Y 2007 J. Electron. Mater. 36 1333
[11] Xu X M, He S, Zhou C H, Xia X D, Xu L, Chen H, Yang B C and Yang J L 2016 RSC Adv. 6 105895
[12] Li B, Ye S, Stewart I E, Alvarez S and Wiley B J 2015 Nano Lett. 15 6722
[13] Lee J, Lee P, Lee H, Lee D, Lee S S and Ko S H 2012 Nanoscale 4 6408
[14] Xia X D, Yang B C, Zhang X and Zhou C H 2015 Mat. Res. Express 2 075009
[15] Lin C Y, Kuo D H, Chen W C, Ma M W and Liou G S 2012 Org. Electron. 13 2469
[16] Xu F and Zhu Y 2012 Adv. Mater. 24 5117
[17] Qin M M, Ji W, Feng Y Y and Fe W 2014 Chin. Phys. B 23 028103
[18] Sun Z G, Pang Y Y, Hu J H, He X and Li Y C 2016 Acta Phys. Sin. 65 097301 (in Chinese)
[19] Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459
[20] Hu L B, Kim H S, Lee J Y, Peumans P and Cui Y 2010 Acs Nano 4 2955
[21] Sun Y G, Mayers B, Herricks T and Xia Y N 2003 Nano Lett. 3 955
[22] Sun Y G, Yin Y D, Mayers B T, Herricks T and Xia Y N 2002 Chem. Mater. 14 4736
[23] Zhou C H, Yang Y, Zhang J, Xu S, Wu S, Hu H, Chen B L, Tai Q D, Sun Z H and Zhao X Z 2009 Electrochim. Acta 54 5320
[24] Zhou C H, Zhao X Z, Yang B C, Zhang D, Li Z Y and Zhou K C 2012 J. Colloid Interface Sci. 374 9
[25] Miyasaka T, Ikegami M and Kijitori Y 2007 J. Electrochem. Soc. 154 A455
[26] Sun Y G and Xia Y N 2002 Science 298 2176
[27] Xia Y, Xiong Y, Lim B and Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60
[28] Leng J S, Lv H B, Liu Y J and Du S Y 2007 Appl. Phys. Lett. 91 144105
[29] Yamamoto N, de Villoria R G and Wardle B L 2012 Compos. Sci. Technol. 72 2009
[30] Murphy E B and Wudl F 2010 Prog. Polym. Sci. 35 223
[31] Park J M, Kwon D J, Wang Z J and Devries K L 2015 Adv. Compos. Mater. 24 197
[32] De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J and Coleman J N S 2009 ACS Nano 3 1767
[33] He X, He R H, Liu A L, Chen X Y, Zhao Z L, Feng S, Chen N and Zhang M 2014 J. Mater. Chem.C 2 9737
[34] Hu L, Kim H S, Lee J Y, Peumans P and Cui Y 2010 ACS Nano 4 2955
[35] Hsu P C, Wang S, Wu H, Narasimhan V K, Kong D, Ryoung L H and Cui Y 2013 Nat. Commun. 4 2522
[36] Mutiso R M, Sherrott M C, Rathmell A R, Wiley B J and Winey K I 2013 ACS Nano 7 7654
[37] https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[5] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!