ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range |
Wei Heng (魏恒), Jin Peng (金鹏), Luo Shuai (罗帅), Ji Hai-Ming (季海铭), Yang Tao (杨涛), Li Xin-Kun (李新坤), Wu Jian (吴剑), An Qi (安琪), Wu Yan-Hua (吴艳华), Chen Hong-Mei (陈红梅), Wang Fei-Fei (王飞飞), Wu Ju (吴巨), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The optical performance of a grating-coupled external cavity laser based on InAs/InP quantum dots is investigated. Continuous tuning from 1391 nm to 1468 nm is realized at an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.
|
Received: 05 February 2013
Revised: 26 March 2013
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274072, 60976057, 61176047, and 60876086). |
Corresponding Authors:
Jin Peng
E-mail: pengjin@semi.ac.cn
|
Cite this article:
Wei Heng (魏恒), Jin Peng (金鹏), Luo Shuai (罗帅), Ji Hai-Ming (季海铭), Yang Tao (杨涛), Li Xin-Kun (李新坤), Wu Jian (吴剑), An Qi (安琪), Wu Yan-Hua (吴艳华), Chen Hong-Mei (陈红梅), Wang Fei-Fei (王飞飞), Wu Ju (吴巨), Wang Zhan-Guo (王占国) A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range 2013 Chin. Phys. B 22 094211
|
[1] |
Htoon H, Doorn S K and Klimov V I 2005 Phys. Rev. Lett. 94 127403
|
[2] |
Yi L, Yuan J, Qi X H, Chen W L, Zhou D W, Zhou T, Zhou X J and Chen X Z 2009 Chin. Phys. B 18 1409
|
[3] |
Woodworth S C, Cassidy D T and Hamp M J 2011 Appl. Opt. 40 6719
|
[4] |
Kuramoto N and Fujii K 2005 IEEE Trans. Instrum. Meas. 54 868
|
[5] |
Huber R, Wojtkowski M, Fujimoto J G, Jiang J Y and Cable A E 2005 Opt. Express 13 10523
|
[6] |
Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
|
[7] |
Lim H, Park B H, Yelin R and Yun S H 2006 Opt. Express 14 5937
|
[8] |
Srinivasan V J, Huber R, Gorczynska I, Fujimoto J G, Jiang J Y, Reisen P and Cable A E 2007 Opt. Lett. 32 361
|
[9] |
Yoo S J B 1996 J. Lightw. Technol. 14 955
|
[10] |
Tanaka T, Hibino Y, Hashimoto T, Abe M, Kasahara R and Tohmori Y 2004 J. Lightw. Technol. 22 567
|
[11] |
Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q and Wang Z G 2004 Acta Phys. Sin. 53 301 (in Chinese)
|
[12] |
Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
|
[13] |
Li W S and Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinses)
|
[14] |
Tang N Y, Chen X S and Lu W 2005 Acta Phys. Sin. 54 5855 (in Chinese)
|
[15] |
Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
|
[16] |
Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
|
[17] |
Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
|
[18] |
Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[19] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[20] |
Li X K, Jin P, An Q, Liang D C, Wu J and Wang Z G 2013 Chin. Phys. B 22 048102
|
[21] |
Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J and Wang Z G 2011 Nonoscal. Res. Lett. 6 625
|
[22] |
Marco R, Alexander M, Andrea F, Lorenzo O and Christian V 2005 IEEE Photon. Technol. Lett. 17 540
|
[23] |
Du C H, Song J D, Won J C, J I L, J C J and Ii K H 2003 Jpn. J Appl. Phys. 42 5133
|
[24] |
Li H, Daniels R T and Wang Z 1999 J. Cryst. Growth 200 321
|
[25] |
Poole P J, McCaffrey J, Williams R L, Lefebvre J and Chithrani D 2001 J. Vac. Sci. Technol. B 19 1467
|
[26] |
Ustinov V M, ZhuKov A E, Egorov A Y, Kovsh A R, Masksimov M V and Bert N A 1996 Semiconductors 31 1080
|
[27] |
Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
|
[28] |
Lv X Q, Jin P, Wang W Y and Wang Z G 2010Opt. Express 18 8916
|
[29] |
Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett.36 1544
|
[30] |
Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
|
[31] |
Biebersdorf A, Lingk C, Giorgi M D, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Bohm G, Amann M C and Abstreiter G 2003 Appl. Phys. Lett. 36 1928
|
[32] |
Lin G, Su P Y and Cheng H C 2012 Opt. Express 20 3941
|
[33] |
Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 33 1210
|
[34] |
Ortner G, Allen C Ní Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
|
[35] |
Chen P, Gong Q, Cao C F, Li S G, Wang Y, Liu Q B, Yue L, Zhang Y G, Feng S L, Ma C H and Wang H L 2011 Appl. Phys. Lett. 98 121102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|