ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Shaping of few-cycle laser pulses via a subwavelength structure |
Guo Liang (郭亮)a, Xie Xiao-Tao (谢小涛)a, Zhan Zhi-Ming (詹志明)b |
a Department of Physics, Northwest University, Xi’an 710069, China;
b School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China |
|
|
Abstract We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a subwavelength structure, which is described by the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses.
|
Received: 04 October 2012
Revised: 18 January 2013
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61008016 and 61108006), the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2010JQ1002), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106101120020), and the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDC155). |
Corresponding Authors:
Xie Xiao-Tao, Zhan Zhi-Ming
E-mail: xtxie@nwu.edu.cn; jasonzzm@tom.com
|
Cite this article:
Guo Liang (郭亮), Xie Xiao-Tao (谢小涛), Zhan Zhi-Ming (詹志明) Shaping of few-cycle laser pulses via a subwavelength structure 2013 Chin. Phys. B 22 094212
|
[1] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[2] |
Baltuška A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 412 611
|
[3] |
Leblond H 2008 Phys. Rev. A 78 013807
|
[4] |
Leblond H, Mel’nikov I V and Mihalache D 2008 Phys. Rev. A 78 043802
|
[5] |
Skobelev S A, Kartashov D V and Kim A V 2007 Phys. Rev. Lett. 99 203902
|
[6] |
Brabec T and Krausz F 1997 Phys. Rev. Lett. 78 3282
|
[7] |
Eggleton B J, Slusher R E, de Sterke C M, Krug P A and Sipe J E 1996 Phys. Rev. Lett. 76 1627
|
[8] |
Kalosha V P and Herrmann J 1999 Phys. Rev. Lett. 83 544
|
[9] |
Agrawal G P 2007 Nonlinear Fiber Optics 4th edn. (Boston: Academic Press) p. 25
|
[10] |
Rothenberg J E 1992 Opt. Lett. 17 1340
|
[11] |
Pusch A, Hamm J M and Hess O 2011 Phys. Rev. A 84 023827
|
[12] |
Lin Y, Chen I H and Lee R K 2011 Phys. Rev. A 83 043828
|
[13] |
Yang W, Song X, Li R and Xu Z 2008 Phys. Rev. A 78 023836
|
[14] |
Song X, Gong S and Xu Z 2005 Opt. Spectrosc. 99 517
|
[15] |
Mücke O D, Tritschler T, Wegener M, Morgner U and Kärtner F X 2001 Phys. Rev. Lett. 87 057401
|
[16] |
Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E and de Silvestri S 2001 Nature 414 182
|
[17] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[18] |
Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phys. Rev. Lett. 99 133602
|
[19] |
Zhang X Y, Lu J Q, Zhang S A, Jia T Q, Sun Z Rong and Wang Z G 2009 Acta Phys. Sin. 58 8212 (in Chinese)
|
[20] |
Wang Z Y, Xu Z Z and Xiao J 2001 Chin. Phys. 10 941
|
[21] |
Song R, Hou J, Chen S P, Yang W Q and Lu Q S 2012 Chin. Phys. B 21 094211
|
[22] |
Busch K, von Freymann G, Linden S, Mingaleev S, Tkeshelashvili L and Wegener M 2007 Phys. Rep. 444 101
|
[23] |
Scalora M, Dowling J P, Bowden C M and Bloemer M J 1994 Phys. Rev. Lett. 73 1368
|
[24] |
Kurizki G, Kozhekin A E, Opatrny T and Malomed B 2001 Progress in Optics (North-Holland: Elsevier) 42 93
|
[25] |
Kozhekin A and Kurizki G 1995 Phys. Rev. Lett. 74 5020
|
[26] |
Mantsyzov B I 1995 Phys. Rev. A 51 4939
|
[27] |
Khitrova G, Gibbs H M, Jahnke F, Kira M and Koch S W 1999 Rev. Mod. Phys. 71 1591
|
[28] |
Xie X T and Macovei M 2010 Phys. Rev. Lett. 104 073902
|
[29] |
Song X, Yang W, Zeng Z, Li R and Xu Z 2010 Phys. Rev. A 82 053821
|
[30] |
Ziolkowski R W, Arnold J M and Gogny D M 1995 Phys. Rev. A 52 3082
|
[31] |
Leblond H and Mihalache D 2010 Phys. Rev. A 81 063815
|
[32] |
Leblond H, Triki H, Sanchez F and Mihalache D 2012 Opt. Commun. 285 356
|
[33] |
Shim M and Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955
|
[34] |
Tanaka K, Hirori H and Nagai M 2011 IEEE Trans. Terahertz Sci. Technol. 1 301
|
[35] |
Soubusta J, Grill R, Hlidek P, Zvara M, Smrcka L, Malzer S, Geibelbrecht W and Dohler G H 1999 Phys. Rev. B 60 7740
|
[36] |
Acus A and Dargys A 2011 Phys. Scr. 84 015703
|
[37] |
McCall S L and Hahn E L 1969 Phys. Rev. 183 457
|
[38] |
Lamb G L 1971 Rev. Mod. Phys. 43 99
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|