Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094211    DOI: 10.1088/1674-1056/22/9/094211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range

Wei Heng (魏恒), Jin Peng (金鹏), Luo Shuai (罗帅), Ji Hai-Ming (季海铭), Yang Tao (杨涛), Li Xin-Kun (李新坤), Wu Jian (吴剑), An Qi (安琪), Wu Yan-Hua (吴艳华), Chen Hong-Mei (陈红梅), Wang Fei-Fei (王飞飞), Wu Ju (吴巨), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The optical performance of a grating-coupled external cavity laser based on InAs/InP quantum dots is investigated. Continuous tuning from 1391 nm to 1468 nm is realized at an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.
Keywords:  quantum dot      external cavity      tunable laser  
Received:  05 February 2013      Revised:  26 March 2013      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  78.76.Hc  
  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274072, 60976057, 61176047, and 60876086).
Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Wei Heng (魏恒), Jin Peng (金鹏), Luo Shuai (罗帅), Ji Hai-Ming (季海铭), Yang Tao (杨涛), Li Xin-Kun (李新坤), Wu Jian (吴剑), An Qi (安琪), Wu Yan-Hua (吴艳华), Chen Hong-Mei (陈红梅), Wang Fei-Fei (王飞飞), Wu Ju (吴巨), Wang Zhan-Guo (王占国) A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range 2013 Chin. Phys. B 22 094211

[1] Htoon H, Doorn S K and Klimov V I 2005 Phys. Rev. Lett. 94 127403
[2] Yi L, Yuan J, Qi X H, Chen W L, Zhou D W, Zhou T, Zhou X J and Chen X Z 2009 Chin. Phys. B 18 1409
[3] Woodworth S C, Cassidy D T and Hamp M J 2011 Appl. Opt. 40 6719
[4] Kuramoto N and Fujii K 2005 IEEE Trans. Instrum. Meas. 54 868
[5] Huber R, Wojtkowski M, Fujimoto J G, Jiang J Y and Cable A E 2005 Opt. Express 13 10523
[6] Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
[7] Lim H, Park B H, Yelin R and Yun S H 2006 Opt. Express 14 5937
[8] Srinivasan V J, Huber R, Gorczynska I, Fujimoto J G, Jiang J Y, Reisen P and Cable A E 2007 Opt. Lett. 32 361
[9] Yoo S J B 1996 J. Lightw. Technol. 14 955
[10] Tanaka T, Hibino Y, Hashimoto T, Abe M, Kasahara R and Tohmori Y 2004 J. Lightw. Technol. 22 567
[11] Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q and Wang Z G 2004 Acta Phys. Sin. 53 301 (in Chinese)
[12] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[13] Li W S and Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinses)
[14] Tang N Y, Chen X S and Lu W 2005 Acta Phys. Sin. 54 5855 (in Chinese)
[15] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[16] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[17] Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
[18] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[19] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[20] Li X K, Jin P, An Q, Liang D C, Wu J and Wang Z G 2013 Chin. Phys. B 22 048102
[21] Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J and Wang Z G 2011 Nonoscal. Res. Lett. 6 625
[22] Marco R, Alexander M, Andrea F, Lorenzo O and Christian V 2005 IEEE Photon. Technol. Lett. 17 540
[23] Du C H, Song J D, Won J C, J I L, J C J and Ii K H 2003 Jpn. J Appl. Phys. 42 5133
[24] Li H, Daniels R T and Wang Z 1999 J. Cryst. Growth 200 321
[25] Poole P J, McCaffrey J, Williams R L, Lefebvre J and Chithrani D 2001 J. Vac. Sci. Technol. B 19 1467
[26] Ustinov V M, ZhuKov A E, Egorov A Y, Kovsh A R, Masksimov M V and Bert N A 1996 Semiconductors 31 1080
[27] Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
[28] Lv X Q, Jin P, Wang W Y and Wang Z G 2010Opt. Express 18 8916
[29] Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett.36 1544
[30] Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
[31] Biebersdorf A, Lingk C, Giorgi M D, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Bohm G, Amann M C and Abstreiter G 2003 Appl. Phys. Lett. 36 1928
[32] Lin G, Su P Y and Cheng H C 2012 Opt. Express 20 3941
[33] Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 33 1210
[34] Ortner G, Allen C Ní Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
[35] Chen P, Gong Q, Cao C F, Li S G, Wang Y, Liu Q B, Yue L, Zhang Y G, Feng S L, Ma C H and Wang H L 2011 Appl. Phys. Lett. 98 121102
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!