|
|
Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity |
Wang Zhi-Hui (王志会)a, Zhu Long (朱龙)a, Su Shi-Lei (苏石磊)a, Guo Qi (郭奇)b, Cheng Liu-Yong (程留永)b, Zhu Ai-Dong (朱爱东)a, Zhang Shou (张寿)a |
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract We propose a method to construct an optical cluster-state analyzer based on cross-Kerr nonlinearity combined with linear optics elements. In the scheme, we employ two four-qubit parity gates and the controlled phase gate (CPG) from only the cross-Kerr nonlinearity and show that all the orthogonal four-qubit cluster states can be completely identified. The scheme is significant for the large-scale quantum communication and quantum information processing networks. In addition, the scheme is feasible and deterministic under current experimental conditions.
|
Received: 25 December 2012
Revised: 17 April 2013
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60667001 and 11165015). |
Corresponding Authors:
Zhang Shou
E-mail: szhang@ybu.edu.cn
|
Cite this article:
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿) Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity 2013 Chin. Phys. B 22 090309
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootter W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[3] |
Lo H K and Chau H F 1999 Science 283 2050
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[6] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[7] |
Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
|
[8] |
Engel H A and Loss D 2005 Science 309 586
|
[9] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[10] |
Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
|
[11] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[12] |
Pan J W and Zeilinger A 1998 Phys. Rev. A 57 2208
|
[13] |
Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308
|
[14] |
Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 66 014102
|
[15] |
Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
|
[16] |
Kim Y H and Grice W P 2003 Phys. Rev. A 68 062305
|
[17] |
Kok P and Lovett B 2010 Introduction to Optical Quantum Information Processing (London: Cambridge University Press)
|
[18] |
Munro W J, Nemoto K and Spiller T P 2005 New. J. Phys. 7 137
|
[19] |
Milburn G J 1989 Phys. Rev. Lett. 62 2124
|
[20] |
Lukin M D and Imamoglu A 2000 Phys. Rev. Lett. 84 1419
|
[21] |
Friedler I, Kurizki G and Petrosyan D 2005 Phys. Rev. A 71 023803
|
[22] |
Sun H, Feng X L, Gong S Q and Oh C H 2009 Phys. Rev. B 79 193404
|
[23] |
Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
|
[24] |
Walther P, Aspelmeyer M, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 95 020403
|
[25] |
Kiesel N, Schmid C, Weber U, Tóth G, Gühne O, Ursin R and Wein-furter H 2005 Phys. Rev. Lett. 95 210502
|
[26] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[27] |
Zhang W, Liu Y M, Liu J and Zhang Z J 2008 Chin. Phys. B 17 3203
|
[28] |
Zhong L Y, Guo Q, Cheng L Y, Su S L, Wang H F and Zhang S 2012 Opt. Commun. 285 4616
|
[29] |
Si Bin, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
|
[30] |
Zhu L, Su S L, Guo Q, Cheng L Y, Wang H F and Zhang S 2013 Quantum Information Process. 12 2749
|
[31] |
Choudhury S, Muralidharan S and Panigrahi P K 2009 J. Phys. A 42 115303
|
[32] |
Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
|
[33] |
Wang X W, Zhang Y D, Tang S Q and Xie L J 2012 Quantum Inf. Process. 12 1065
|
[34] |
Chen Y F, Wang C Y, Wang S H and Yu I A 2006 Phys. Rev. Lett. 96 043603
|
[35] |
Li S J, Yang X D, Cao X M, Zhang C H, Xie C D and Wang H 2008 Phys. Rev. Lett. 101 073602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|