Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080303    DOI: 10.1088/1674-1056/26/8/080303
GENERAL Prev   Next  

Determining spatial structures of ion crystals by simulated annealing method

Wen-Bo Wu(武文博)1,2, Chun-Wang Wu(吴春旺)1,2, Jian Li(李剑)1,2, Bao-Quan Ou(欧保全)1,2, Yi Xie(谢艺)1,2, Wei Wu(吴伟)1,2, Ping-Xing Chen(陈平形)1,2
1 College of Science, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  

Calculating the spatial structures of ion crystals is important in ion-trapped quantum computation. Here we demonstrate that the simulated annealing method is a powerful tool to evaluate the structures of ion crystals. By calculating equilibrium positions of 10 ions under harmonic potential and those of 120 ions under anharmonic potential, both with the standard procedure and simulated annealing method, we find that the standard procedure to evaluate spatial structures is complicated and may be inefficient in some cases, and that the simulated annealing method is more favorable.

Keywords:  quantum information      ion trap      ion crystal      equilibrium position  
Received:  31 March 2017      Revised:  02 May 2017      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  37.10.Ty (Ion trapping)  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), the National Natural Science Foundation of China (Grant Nos. 11304387, 11174370, 61632021, 61205108, and 11305262), and the Research Plan Project of National University of Defense Technology (Grant No. ZK16-03-04).

Corresponding Authors:  Wei Wu, Ping-Xing Chen     E-mail:  weiwu@nudt.edu.cn;pxchen@nudt.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形) Determining spatial structures of ion crystals by simulated annealing method 2017 Chin. Phys. B 26 080303

[1] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 08812
[2] Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leiried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
[3] Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D and Brown K R 2014 Phys. Rev. A 89 062308
[4] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 00784
[5] Monroe C and Kim J 2013 Science 339 1231298
[6] Blümel R, Chen J M, Peik E, Quint W, Schleich W, Shen Y R and Walther H 1988 Nature 334 334309a0
[7] Ejtemaee S 2015 "Dynamics of Trapped Ions Near the Linear-Zigzag Structural Phase Transition", Ph. D. Dissertation (Burnaby: Simon Fraser University)
[8] Klumpp A, Liebchen B and Schmelcher P 2016 Phys. Rev. A 380 2644
[9] Diedrich F, Peik E, Chen J M, Quint W and Walther H 1987 Phys. Rev. Lett. 59 2931
[10] Wineland D J, Bergquist J C, Itano W M, Bollinger J J and Manney C H 1987 Phys. Rev. Lett. 59 2935
[11] Drewsen M, Brodersen C, Hornekær L, Hangst J S and Schifffer J P 1998 Phys. Rev. Lett. 81 2878
[12] James D F V 1998 Appl. Phys. B 66 181
[13] Morigi G and Fishman S 2004 Phys. Rev. E 70 066141
[14] Lin G D, Zhu S L, Islam R, Kim K, Chang M S, Korenblit S, Monroe C and Duan L M 2009 Europhys. Lett. 86 60004
[15] Home J P, Hanneke D, Jost J D, Leiried D and Wineland D J 2011 New J. Phys. 13 073026
[16] Thompson R C 2015 Contemp. Phys. 56 63
[17] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671
[18] Press W H, Teukolsky S A, Vetterling W T and Flannery B P Numerical Recipes, 3rd edn. (Cambridge: Cambridge University Press) pp. 549-555
[19] Goffe W L, Ferrier G D and Rogers J 1994 J. Econometrics 60 65
[20] Laarhoven P J M, Aarts E H L and Lenstra J K 1992 Oper. Res. 40 113
[21] Johnson D S, Aragon C R, McGeoch L A and Schevon C 1989 Oper. Res. 37 865
[22] Johanning M 2016 Appl. Phys. B 122 71
[23] Ou B Q, Zhang J, Zhang X F, Xie Y, Chen T, Wu C W, Wu W and Chen P X 2016 Sci. China-Phys. Mech. Astron. 59 123011
[24] Xie Y, Zhang X F, Ou B Q, Chen T, Zhang J, Wu C W, Wu W and Chen P X 2017 Phys. Rev. A 95 032341
[25] Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campo A and Mehlstaubler T E 2013 Nat. Commun. 4 2291
[26] Ulm S, Roßnagel J, Jacob G, Degünther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K 2013 Nat. Commun. 4 2290
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[7] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[8] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[9] Accurate electron affinity of atomic cerium and excited states of its anion
Xiao-Xi Fu(付筱茜), Ru-Lin Tang(唐如麟), Yu-Zhu Lu(陆禹竹), Chuan-Gang Ning(宁传刚). Chin. Phys. B, 2020, 29(7): 073201.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[13] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[14] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[15] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
No Suggested Reading articles found!