|
|
Determining spatial structures of ion crystals by simulated annealing method |
Wen-Bo Wu(武文博)1,2, Chun-Wang Wu(吴春旺)1,2, Jian Li(李剑)1,2, Bao-Quan Ou(欧保全)1,2, Yi Xie(谢艺)1,2, Wei Wu(吴伟)1,2, Ping-Xing Chen(陈平形)1,2 |
1 College of Science, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Calculating the spatial structures of ion crystals is important in ion-trapped quantum computation. Here we demonstrate that the simulated annealing method is a powerful tool to evaluate the structures of ion crystals. By calculating equilibrium positions of 10 ions under harmonic potential and those of 120 ions under anharmonic potential, both with the standard procedure and simulated annealing method, we find that the standard procedure to evaluate spatial structures is complicated and may be inefficient in some cases, and that the simulated annealing method is more favorable.
|
Received: 31 March 2017
Revised: 02 May 2017
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
37.10.Ty
|
(Ion trapping)
|
|
64.60.F-
|
(Equilibrium properties near critical points, critical exponents)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), the National Natural Science Foundation of China (Grant Nos. 11304387, 11174370, 61632021, 61205108, and 11305262), and the Research Plan Project of National University of Defense Technology (Grant No. ZK16-03-04). |
Corresponding Authors:
Wei Wu, Ping-Xing Chen
E-mail: weiwu@nudt.edu.cn;pxchen@nudt.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形) Determining spatial structures of ion crystals by simulated annealing method 2017 Chin. Phys. B 26 080303
|
[1] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 08812
|
[2] |
Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leiried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
|
[3] |
Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D and Brown K R 2014 Phys. Rev. A 89 062308
|
[4] |
Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 00784
|
[5] |
Monroe C and Kim J 2013 Science 339 1231298
|
[6] |
Blümel R, Chen J M, Peik E, Quint W, Schleich W, Shen Y R and Walther H 1988 Nature 334 334309a0
|
[7] |
Ejtemaee S 2015 "Dynamics of Trapped Ions Near the Linear-Zigzag Structural Phase Transition", Ph. D. Dissertation (Burnaby: Simon Fraser University)
|
[8] |
Klumpp A, Liebchen B and Schmelcher P 2016 Phys. Rev. A 380 2644
|
[9] |
Diedrich F, Peik E, Chen J M, Quint W and Walther H 1987 Phys. Rev. Lett. 59 2931
|
[10] |
Wineland D J, Bergquist J C, Itano W M, Bollinger J J and Manney C H 1987 Phys. Rev. Lett. 59 2935
|
[11] |
Drewsen M, Brodersen C, Hornekær L, Hangst J S and Schifffer J P 1998 Phys. Rev. Lett. 81 2878
|
[12] |
James D F V 1998 Appl. Phys. B 66 181
|
[13] |
Morigi G and Fishman S 2004 Phys. Rev. E 70 066141
|
[14] |
Lin G D, Zhu S L, Islam R, Kim K, Chang M S, Korenblit S, Monroe C and Duan L M 2009 Europhys. Lett. 86 60004
|
[15] |
Home J P, Hanneke D, Jost J D, Leiried D and Wineland D J 2011 New J. Phys. 13 073026
|
[16] |
Thompson R C 2015 Contemp. Phys. 56 63
|
[17] |
Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671
|
[18] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P Numerical Recipes, 3rd edn. (Cambridge: Cambridge University Press) pp. 549-555
|
[19] |
Goffe W L, Ferrier G D and Rogers J 1994 J. Econometrics 60 65
|
[20] |
Laarhoven P J M, Aarts E H L and Lenstra J K 1992 Oper. Res. 40 113
|
[21] |
Johnson D S, Aragon C R, McGeoch L A and Schevon C 1989 Oper. Res. 37 865
|
[22] |
Johanning M 2016 Appl. Phys. B 122 71
|
[23] |
Ou B Q, Zhang J, Zhang X F, Xie Y, Chen T, Wu C W, Wu W and Chen P X 2016 Sci. China-Phys. Mech. Astron. 59 123011
|
[24] |
Xie Y, Zhang X F, Ou B Q, Chen T, Zhang J, Wu C W, Wu W and Chen P X 2017 Phys. Rev. A 95 032341
|
[25] |
Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campo A and Mehlstaubler T E 2013 Nat. Commun. 4 2291
|
[26] |
Ulm S, Roßnagel J, Jacob G, Degünther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K 2013 Nat. Commun. 4 2290
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|