Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090310    DOI: 10.1088/1674-1056/22/9/090310
GENERAL Prev   Next  

Accelerating an adiabatic process by nonlinear sweeping

Cao Xing-Xin (曹兴鑫)a, Zhuang Jun (庄军)a, Ning Xi-Jing (宁西京)b, Zhang Wen-Xian (张文献)a
a Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China;
b Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
Abstract  We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in contrast to the usual linear sweeping. We find the expected acceleration both in the Landau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N=21.
Keywords:  quantum calculation      quantum adiabatic algorithm      factorization      nonlinear sweeping  
Received:  07 December 2012      Revised:  15 April 2013      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904017), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120013), and the Shanghai Pujiang Program, China (Grant No. 10PJ1401300).
Corresponding Authors:  Zhang Wen-Xian     E-mail:  wenxianzhang@fudan.edu.cn

Cite this article: 

Cao Xing-Xin (曹兴鑫), Zhuang Jun (庄军), Ning Xi-Jing (宁西京), Zhang Wen-Xian (张文献) Accelerating an adiabatic process by nonlinear sweeping 2013 Chin. Phys. B 22 090310

[1] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[2] Childs A M, Farhi E and Preskill J 2002 Phys. Rev. A 65 012322
[3] Roland J and Cerf N 2002 Phys. Rev. A 65 042308
[4] Steffen M, van Dam W, Hogg T, Breyta G and Chuang I 2003 Phys. Rev. Lett. 90 067903
[5] Sarandy M S and Lidar D A 2005 Phys. Rev. Lett. 95 250503
[6] Peng X, Liao Z, Xu N, Qin G, Zhou X, Suter D and Du J 2008 Phys. Rev. Lett. 101 220405
[7] Xu N, Zhu J, Lu D, Zhou X, Peng X and Du J 2012 Phys. Rev. Lett. 108 130501
[8] Georgeot B and Shepelyansky D L 2000 Phys. Rev. E 62 3504
[9] Georgeot B and Shepelyansky D L 2000 Phys. Rev. E 62 6366
[10] Tong D M, Singh K, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 150402
[11] Wei Z and Ying M 2007 Phys. Rev. A 76 024304
[12] Du J, Hu L, Wang Y, Wu J, Zhao M and Suter D 2008 Phys. Rev. Lett. 101 060403
[13] Allen L and Eberly J H 1975 Opt. Acta 22 1041
[14] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[15] Chen X, Ruschhaupt A, Schmidt S, Campo A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 104 063002
[16] Li Y, Wu L A and Wang Z D 2011 Phys. Rev. A 83 043804
[17] Wang W, Hou S C and Yi X X 2012 Ann. Phys. 327 1293
[18] Guo J Y 2002 Chin. Phys. Lett. 19 1041
[19] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[20] Zener C 1932 Proc. R. Soc. A 137 696
[21] Wittig C 2005 J. Phys. Chem. B 109 8428
[22] Zhang M, Zhang P, Chapman M S and You L 2006 Phys. Rev. Lett. 97 070403
[1] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[2] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
[3] Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides
Xue Qin(秦雪). Chin. Phys. B, 2018, 27(10): 100203.
[4] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[5] Exact solutions of the Klein--Gordon equation with Makarov potential and a recurrence relation
Zhang Min-Cang(张民仓) and Wang Zhen-Bang(王振邦). Chin. Phys. B, 2007, 16(7): 1863-1867.
[6] An algorithm and its application for obtaining some kind of infinite-dimensional Hamiltonian canonical formulation
Ren Wen-Xiu(任文秀) and Alatancang(阿拉坦仓). Chin. Phys. B, 2007, 16(11): 3154-3160.
No Suggested Reading articles found!