Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088503    DOI: 10.1088/1674-1056/22/8/088503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer

Ding Bin-Bin (丁彬彬)a b, Zhao Fang (赵芳)a b, Song Jing-Jing (宋晶晶)a b, Xiong Jian-Yong (熊建勇)a b, Zheng Shu-Wen (郑树文)a b, Zhang Yun-Yan (张运炎)a b, Xu Yi-Qin (许毅钦)a b, Zhou De-Tao (周德涛)a b, Yu Xiao-Peng (喻晓鹏)a b, Zhang Han-Xiang (张瀚翔)a b, Zhang Tao (张涛)a b, Fan Guang-Han (范广涵)a b
a Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
b Laboratory of Nanophotonic Functional Materials and Device, South China Normal University, Guangzhou 510631, China
Abstract  Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.
Keywords:  p-AlGaN electron blocking layer (EBL)      n-AlGaN hole blocking layer (HBL)      numerical simulation      InGaN light-emitting diode (LED)  
Received:  23 October 2012      Revised:  09 January 2013      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  85.30.-z (Semiconductor devices)  
  87.15.A- (Theory, modeling, and computer simulation)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province, China (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016), and the Youth Foundation of South China Normal University (Grant No. 2012KJ018).
Corresponding Authors:  Fan Guang-Han     E-mail:  gfan@scnu.edu.cn

Cite this article: 

Ding Bin-Bin (丁彬彬), Zhao Fang (赵芳), Song Jing-Jing (宋晶晶), Xiong Jian-Yong (熊建勇), Zheng Shu-Wen (郑树文), Zhang Yun-Yan (张运炎), Xu Yi-Qin (许毅钦), Zhou De-Tao (周德涛), Yu Xiao-Peng (喻晓鹏), Zhang Han-Xiang (张瀚翔), Zhang Tao (张涛), Fan Guang-Han (范广涵) Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer 2013 Chin. Phys. B 22 088503

[1] Muramoto Y, Kimura M, Dempo A, Nouda S, Fukawa Y and Sakai S 2011 J. Soc. Inf. Disp. 19 907
[2] Pimputkar S, Speck J, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180
[3] Horiuchi N 2010 Nat. Photon. 4 738
[4] Chen Y X, Shen G D, Guo W L, Xu C and Li J J 2011 Chin. Phys. B 20 017204
[5] Wang Z J, Li P L, Yang Z P, Guo Q L and Li X 2010 Chin. Phys. B 19 017801
[6] Mukai T, Yamada M and Nakamura S 1999 Jpn. J. Appl. Phys. Part 38 3976
[7] Sun W, Shatalov M, Deng J, Hu X, Yang J, Lunev A, Bilenko Y, Shur M and Gaska R 2010 Appl. Phys. Lett. 96 061102
[8] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[9] Schubert M F, Chhajed S, Kim J K, Schubert E F, Koleske D D, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl. Phys. Lett. 91 231114
[10] Rozhansky I V and Zakheim D A 2006 Phys. Status Solidi C 3 2160
[11] Wang J X, Wang L, Zhao W, Hao Z B and Luo Y 2010 Appl. Phys. Lett. 97 201112
[12] Wang J X, Wang L, Wang L, Hao Z B, Luo Y, Dempewolf A, Muller M, Bertram F and Christen J 2012 J. Appl. Phys. 112 023107
[13] Delaney K T, Rinke P and Van de Walle C G 2009 Appl. Phys. Lett. 94 191109
[14] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[15] Rozhansky I V and Zakheim D A 2006 Semiconductors 40 839
[16] Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 9245
[17] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[18] Fu Y K, Jiang R H, Lu Y H, Chen B C, Xuan R, Fang Y H, Lin C F, Su Y K and Chen J F 2011 Appl. Phys. Lett. 98 121115
[19] Zhao H, Liu G, Zhang J, Poplawsky J D, Dierolf V and Tansu N 2011 Opt. Express 19 A991
[20] Liao C T, Tsai M C, Liou B T, Yen S H and Kuo Y K 2010 J. Appl. Phys. 108 063107
[21] Zhao H and Tansu N 2010 J. Appl. Phys. 107 113110
[22] Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
[23] Chen J, Fan G H and Zhang Y Y 2013 Chin. Phys. B 22 018504
[24] Kuo Y K, Chang J Y and Tsai M C 2010 Opt. Lett. 35 3285
[25] Chichibu S F, Abare A C, Minsky M S, Keller S, Fleisher S B, Bowers J E, Hu E, Mishra U K, Coldren L A, Denbaurs S P and Sota T 1998 Appl. Phys. Lett. 73 2006
[26] Kuokstis E, Yang J W, Simin G, Khan M A, Gaska R and Shur M S 2002 Appl. Phys. Lett. 80 977
[27] Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105
[28] Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 1214
[29] Yen S H, Tsai M C, Shen Y J, Hsu T C and Kuo Y K 2009 IEEE Photon. Technol. Lett. 21 975
[30] Wang C H, Ke C C, Lee C Y, Chang S P, Chang W T, Li J C, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 261103
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!