Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088502    DOI: 10.1088/1674-1056/22/8/088502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The conductive mechanisms of a titanium oxide memristor with dopant drift and a tunnel barrier

Tian Xiao-Bo (田晓波), Xu Hui (徐晖), Li Qing-Jiang (李清江)
Embedded System and Solid-State Engineering Technology Center, School of Electronic Science and Engineering,National University of Defense and Technology, Changsha 410073, China
Abstract  Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together they codetermine the conductive behaviors of the memristor. In this paper, we first analyze the theoretical base and conductive process of a memristor, and then propose a compatible circuit model to discuss and simulate the coexistence of the dopant drift and tunnel barrier-based mechanisms. Simulation results are given and compared with the published experimental data to prove the possibility of the coexistence. This work provides a practical model and some suggestions for studying the conductive mechanisms of memristors.
Keywords:  memristor      conductive mechanism      dopant drift      tunnel barrier  
Received:  30 January 2013      Revised:  06 March 2013      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  87.85.Qr (Nanotechnologies-design)  
  61.46.-w (Structure of nanoscale materials)  
  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171017).
Corresponding Authors:  Tian Xiao-Bo     E-mail:  txiaobo1985@gmail.com

Cite this article: 

Tian Xiao-Bo (田晓波), Xu Hui (徐晖), Li Qing-Jiang (李清江) The conductive mechanisms of a titanium oxide memristor with dopant drift and a tunnel barrier 2013 Chin. Phys. B 22 088502

[1] Song T Q and Gao S J http://book.51cto.com/art/201103/246990.htm (in Chinese) [2011-07-20]
[2] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[3] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[4] Kim H, Sah M P, Yang C, Roska T and Chua L O 2011 IEEE Trans. Circ. Sys. 59 148
[5] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[6] Raja T and Mourad S 2009 International Conference on Communications, Circuits and Systems, July 23-25, 2009, Milpitas, California, USA, p. 939
[7] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[8] Chua L O and Kang S M 1976 Proceedings of the IEEE 64 209
[9] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[10] Biolek Z, Biolek D and Biolkova V 2009 Radioengineering 18 210
[11] Zhang X, Zhou Y Z, Bi Q, Yang X H and Zu Y X 2010 Acta Phys. Sin. 59 6674 (in Chinese)
[12] Bao B C, Hu W, Xu J P, Liu Z and Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese)
[13] Song D H, Lü M F, Ren X, Li M M and Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese)
[14] Jia L N, Huang A P, Zheng X H, Xiao Z S and Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese)
[15] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[16] Stewart D R, Ohlberg D A A, Beck P A, Chen Y and Williams R S 2004 Nano Lett. 4 133
[17] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R and Williams R S 2009 J. Appl. Phys. 106 074508
[18] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[19] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Nature Nanotechnology 3 429
[20] Williams R S 2008 Spectrum IEEE 45 28
[21] Michelakis K, Prodromakis T and Toumazou C 2010 Micro & Nano Letters 5 2 91
[22] Simmons J 1963 J. Appl. Phys. 34 1793
[23] Abdalla H and Pickett M D 2011 International Symposium on Circuits and Systems, May 15-18, Rio de Janeiro, Brazil, p. 1832
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[6] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!