Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074301    DOI: 10.1088/1674-1056/22/7/074301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos

Chen Sheng-Bing (陈圣兵), Wen Ji-Hong (温激鸿), Wang Gang (王刚), Wen Xi-Sen (温熙森)
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;Key Laboratory of Photonic and Phononic Crystal of Ministry of Education, National University of Defense Technology, Changsha 410073, China
Abstract  Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.
Keywords:  piezoelectric shunting      metamaterial      phononic      band gaps  
Received:  25 September 2012      Revised:  14 November 2012      Accepted manuscript online: 
PACS:  43.20+g  
  43.40+s  
  02.60.-x (Numerical approximation and analysis)  
  77.65.-g  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50905182 and 51175501).
Corresponding Authors:  Chen Sheng-Bing     E-mail:  nudt_chen@163.com

Cite this article: 

Chen Sheng-Bing (陈圣兵), Wen Ji-Hong (温激鸿), Wang Gang (王刚), Wen Xi-Sen (温熙森) Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos 2013 Chin. Phys. B 22 074301

[1] Mead D J 1970 J. Sound Vibr. 11 181
[2] Mead D J 1986 J. Sound Vibr. 104 9
[3] Mead D J and Markus S 1983 J. Sound Vibr. 90 1
[4] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[5] Sigalas M 1998 J. Appl. Phys. 84 3026
[6] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2000 Science 289 1734
[7] Goffaux C, Sanchez-Dehesa J, Yeyati A L, Lambin P, Khelif A, Vasseur J O and Djafari-Rouhani B 2002 Phys. Rev. Lett. 88 225502
[8] Wang G, Wen X, Wen J, Shao L and Liu Y 2004 Phys. Rev. Lett. 93 154302
[9] Wang G, Wen J and Wen X 2005 Phys. Rev. B 71 104302
[10] Fang J Y, Yu D L, Han X Y and Cai L 2009 Chin. Phys. B 18 1316
[11] Wen J H, Yu D L, Xiao Y and Wen X S 2009 Chin. Phys. B 18 2404
[12] Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
[13] Li J and Chan C T 2004 Phys. Rev. E 70 055602
[14] Fang N, Xi D, Xu J, Ambati M, Strituravanich W, Sun C and Zhang X 2006 Nature Mater. 5 452
[15] Milton G W 2007 New J. Phys. 9 359
[16] Xiao Y, Wen J and Wen X 2012 New J. Phys. 14 033042
[17] Thorp O, Ruzzene M and Baz A 2001 Smart Mater. Struct. 10 979
[18] Thorp O, Ruzzene M and Baz A 2005 Smart Mater. Struct. 14 594
[19] Airoldi L and Ruzzene M 2011 J. Intell. Mater. Syst. Struct. 10 979
[20] Airoldi L and Ruzzene M 2011 New J. Phys. 13 113010
[21] Chen S, Wen J, Wang G, Yu D and Wen X 2012 J. Intell. Mater. Syst. Struct. 23 1613
[22] Wang G, Chen S and Wen J 2011 Smart Mater. Struct. 20 015026
[23] Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese)
[24] Chen S B, Wen J H, Yu D L, Wang G and Wen X S 2011 Chin. Phys. B 20 014301
[25] Chen S B, Wen J H, Wang G, Han X Y and Wen J H 2011 Chin. Phys. Lett. 28 094301
[26] Wang G, Wang J and Chen S 2011 Smart Mater. Struct. 20 125019
[27] Spadoni A, Ruzzene M and Cunefare K A 2009 J. Intell. Mater. Syst. Struct. 20 979
[28] Casadei F, Ruzzene M, Dozio L and Cunefare K A 2010 Smart Mater. Struct. 19 015002
[29] Farzbod F and Leamy M J 2009 J. Sound Vibr. 325 545
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[12] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[15] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
No Suggested Reading articles found!